Posted in

111分科數學甲試題-11


<選填>在複數平面上,複數\(z\)在第一象限且滿足\(\vert z\vert = 1\)以及\(\vert\frac{-3 + 4i}{5}-z^{3}\vert=\vert\frac{-3 + 4i}{5}-z\vert\),其中\(i = \sqrt{-1}\),\(z\)的實部為\(a\)、虛部為\(b\),則\(a=\)__________ ,\(b=\)__________ (化為最簡根式)

答案

由\(\vert z\vert = 1\),可設\(z=\cos\theta+i\sin\theta\)。已知\(\vert\frac{-3 + 4i}{5}-z^{3}\vert=\vert\frac{-3 + 4i}{5}-z\vert\),將\(z=\cos\theta+i\sin\theta\)代入,利用複數模的性質\(\vert z_1 - z_2\vert^2=(z_1 - z_2)(\overline{z_1 - z_2})\),化簡可得\(\cos3\theta=\cos\theta\)。結合\(z\)在第一象限,可得\(\theta = \frac{\pi}{4}\) ,所以\(z=\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\),即\(a = \frac{\sqrt{2}}{2}\),\(b = \frac{\sqrt{2}}{2}\) 。原答案格式中的空缺部分,經計算\(a=\frac{\sqrt{2}}{2}\)可表示為\(a=\frac{\sqrt{2}}{2}=\frac{\sqrt{4}}{2\sqrt{2}}\) ,\(b=\frac{\sqrt{2}}{2}=\frac{1\times\sqrt{2}}{2}\) (此處是為了對應原格式,但原格式表述可能有誤 ,正確答案以\(a = \frac{\sqrt{2}}{2}\),\(b = \frac{\sqrt{2}}{2}\)為準) 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by