<選填>在複數平面上,複數\(z\)在第一象限且滿足\(\vert z\vert = 1\)以及\(\vert\frac{-3 + 4i}{5}-z^{3}\vert=\vert\frac{-3 + 4i}{5}-z\vert\),其中\(i = \sqrt{-1}\),\(z\)的實部為\(a\)、虛部為\(b\),則\(a=\)__________ ,\(b=\)__________ (化為最簡根式)
因為\(|z| = 1\),
令\(z = \cos\theta + i\sin\theta = a + bi\),\(0^\circ < \theta < 90^\circ\), 所以\(z^3 = \cos3\theta + i\sin3\theta\)。 因為\(\angle Oz^3 = 2\theta\), 且\(\triangle OzW \cong \triangle Owz^3\), 所以\(\angle OwW = \angle WzO^3 = \theta\)。 因為\(\left| \dfrac{-3 + 4i}{5} - z^3 \right| = \left| \dfrac{-3 + 4i}{5} - z \right|\), 表示點\(W\left( -\dfrac{3}{5}, \dfrac{4}{5} \right)\)到\(z^3\)點和到\(z\)點的距離相等, 所以\(\cos2\theta = -\dfrac{3}{5}\),\(\sin2\theta = \dfrac{4}{5}\)。 故\(\cos\theta = \sqrt{\dfrac{1 + \cos2\theta}{2}} = \sqrt{\dfrac{2}{5}} = \dfrac{1}{\sqrt{5}} = \dfrac{\sqrt{5}}{5}\), \(\sin\theta = \sqrt{\dfrac{1 - \cos2\theta}{2}} = \sqrt{\dfrac{8}{5}} = \dfrac{2}{\sqrt{5}} = \dfrac{2\sqrt{5}}{5}\)。 得\(a = \dfrac{\sqrt{5}}{5}\),\(b = \dfrac{2\sqrt{5}}{5}\)。
