Posted in

105指考數學甲試題–B


<選填題>設\(\overset{\rightharpoonup}{u}=(1,2,3)\)、\(\overset{\rightharpoonup}{v}=(1,0,-1)\)、\(\overset{\rightharpoonup}{w}=(x,y,z)\)為空間中三個向量,且向量\(\overset{\rightharpoonup}{w}\)與向量\(\overset{\rightharpoonup}{u}×\overset{\rightharpoonup}{v}\)平行。若行列式\(\begin{vmatrix}1&2&3\\1&0&-1\\x&y&z\end{vmatrix}=-12\),則\(\overset{\rightharpoonup}{w}=(\)__________,__________,__________)。

答案

先求\(\overset{\rightharpoonup}{u}×\overset{\rightharpoonup}{v}=\begin{vmatrix}\overset{\rightharpoonup}{i}&\overset{\rightharpoonup}{j}&\overset{\rightharpoonup}{k}\\1&2&3\\1&0&-1\end{vmatrix}=\overset{\rightharpoonup}{i}(-2 - 0)-\overset{\rightharpoonup}{j}(-1 - 3)+\overset{\rightharpoonup}{k}(0 - 2)=(-2,4,-2)\)。
因為\(\overset{\rightharpoonup}{w}\)與\(\overset{\rightharpoonup}{u}×\overset{\rightharpoonup}{v}\)平行,所以\(\overset{\rightharpoonup}{w}=k(-2,4,-2)=(-2k,4k,-2k)\)。
又\(\begin{vmatrix}1&2&3\\1&0&-1\\x&y&z\end{vmatrix}=1\times(0 + y)-2\times(z + x)+3\times(y - 0)=4y-2x - 2z=-12\),把\(x=-2k\),\(y = 4k\),\(z=-2k\)代入得\(4\times4k-2\times(-2k)-2\times(-2k)=-12\),即\(16k + 4k + 4k=-12\),\(24k=-12\),解得\(k = -\frac{1}{2}\)。
所以\(\overset{\rightharpoonup}{w}=(1,-2,1)\)。
答案依次為\(1\)、\(-2\)、\(1\)。 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by