<多選題>設\(\vec{u}\)與\(\vec{v}\)為兩非零向量,夾角為\(120^{\circ}\)。若\(\vec{u}\)與\(\vec{u}+\vec{v}\)垂直,試選出正確的選項。
(1)\(\vec{u}\)的長度是\(\vec{v}\)的長度的\(2\)倍
(2)\(\vec{v}\)與\(\vec{u}+\vec{v}\)的夾角為\(30^{\circ}\)
(3)\(\vec{u}\)與\(\vec{u}-\vec{v}\)的夾角為銳角
(4)\(\vec{v}\)與\(\vec{u}-\vec{v}\)的夾角為銳角
(5)\(\vec{u}+\vec{v}\)的長度大於\(\vec{u}-\vec{v}\)的長度
已知\(\vec{u}\)與\(\vec{u}+\vec{v}\)垂直,則\(\vec{u}\cdot(\vec{u}+\vec{v}) = 0\),即\(\vec{u}^{2}+\vec{u}\cdot\vec{v}=0\)。
設\(\vert\vec{u}\vert = m\),\(\vert\vec{v}\vert = n\),由向量數量積公式\(\vec{u}\cdot\vec{v}=\vert\vec{u}\vert\vert\vec{v}\vert\cos120^{\circ}=-\frac{1}{2}mn\),\(\vec{u}^{2}=m^{2}\),可得\(m^{2}-\frac{1}{2}mn = 0\),因為\(m\neq0\)(\(\vec{u}\)是非零向量),所以\(m-\frac{1}{2}n = 0\),即\(n = 2m\),\(\vec{v}\)的長度是\(\vec{u}\)的長度的\(2\)倍,(1)錯誤。
\(\vec{v}\cdot(\vec{u}+\vec{v})=\vec{u}\cdot\vec{v}+\vec{v}^{2}=-\frac{1}{2}mn + n^{2}\),把\(n = 2m\)代入得\(-\frac{1}{2}m\times2m+(2m)^{2}=-m^{2}+4m^{2}=3m^{2}\)。
\(\vert\vec{u}+\vec{v}\vert=\sqrt{\vec{u}^{2}+2\vec{u}\cdot\vec{v}+\vec{v}^{2}}=\sqrt{m^{2}+2\times(-\frac{1}{2}mn)+n^{2}}=\sqrt{m^{2}-mn + n^{2}}\),把\(n = 2m\)代入得\(\sqrt{m^{2}-m\times2m+(2m)^{2}}=\sqrt{3}m\)。
\(\cos\langle\vec{v},\vec{u}+\vec{v}\rangle=\frac{\vec{v}\cdot(\vec{u}+\vec{v})}{\vert\vec{v}\vert\vert\vec{u}+\vec{v}\vert}=\frac{3m^{2}}{2m\times\sqrt{3}m}=\frac{\sqrt{3}}{2}\),所以\(\vec{v}\)與\(\vec{u}+\vec{v}\)的夾角為\(30^{\circ}\),(2)正確。
\(\vec{u}\cdot(\vec{u}-\vec{v})=\vec{u}^{2}-\vec{u}\cdot\vec{v}=m^{2}-(-\frac{1}{2}mn)=m^{2}+\frac{1}{2}mn\),把\(n = 2m\)代入得\(m^{2}+\frac{1}{2}m\times2m = 2m^{2}\gt0\),所以\(\vec{u}\)與\(\vec{u}-\vec{v}\)的夾角為銳角,(3)正確。
\(\vec{v}\cdot(\vec{u}-\vec{v})=\vec{u}\cdot\vec{v}-\vec{v}^{2}=-\frac{1}{2}mn - n^{2}\),把\(n = 2m\)代入得\(-\frac{1}{2}m\times2m-(2m)^{2}=-m^{2}-4m^{2}=-5m^{2}\lt0\),所以\(\vec{v}\)與\(\vec{u}-\vec{v}\)的夾角為鈍角,(4)錯誤。
\(\vert\vec{u}-\vec{v}\vert=\sqrt{\vec{u}^{2}-2\vec{u}\cdot\vec{v}+\vec{v}^{2}}=\sqrt{m^{2}-2\times(-\frac{1}{2}mn)+n^{2}}=\sqrt{m^{2}+mn + n^{2}}\),把\(n = 2m\)代入得\(\sqrt{m^{2}+m\times2m+(2m)^{2}}=\sqrt{7}m\)。
因為\(\sqrt{3}m\lt\sqrt{7}m\),即\(\vert\vec{u}+\vec{v}\vert\lt\vert\vec{u}-\vec{v}\vert\),(5)錯誤。
答案為(2)(3)。 報錯
ChatGPT DeepSeek

