Posted in

107指考數學甲試題-01


<單選題>設\(A\)為\(3\times3\)矩陣,且對任意實數\(a,b,c\),\(\begin{bmatrix}a\\b\\c\end{bmatrix}A=\begin{bmatrix}b\\c\\a\end{bmatrix}\)均成立。試問矩陣\(A^{2}\begin{bmatrix}1\\0\\ -1\end{bmatrix}\)為何?
(1)\(\begin{bmatrix}0\\1\\1\end{bmatrix}\)
(2)\(\begin{bmatrix}-1\\1\\0\end{bmatrix}\)
(3)\(\begin{bmatrix}1\\0\\1\end{bmatrix}\)
(4)\(\begin{bmatrix}0\\1\\ -1\end{bmatrix}\)
(5)\(\begin{bmatrix}-1\\0\\1\end{bmatrix}\)

答案

由\(\begin{bmatrix}a\\b\\c\end{bmatrix}A=\begin{bmatrix}b\\c\\a\end{bmatrix}\),令\(\begin{bmatrix}a\\b\\c\end{bmatrix}=\begin{bmatrix}1\\0\\0\end{bmatrix}\),可得\(\begin{bmatrix}1\\0\\0\end{bmatrix}A=\begin{bmatrix}0\\0\\1\end{bmatrix}\);令\(\begin{bmatrix}a\\b\\c\end{bmatrix}=\begin{bmatrix}0\\1\\0\end{bmatrix}\),可得\(\begin{bmatrix}0\\1\\0\end{bmatrix}A=\begin{bmatrix}1\\0\\0\end{bmatrix}\);令\(\begin{bmatrix}a\\b\\c\end{bmatrix}=\begin{bmatrix}0\\0\\1\end{bmatrix}\),可得\(\begin{bmatrix}0\\0\\1\end{bmatrix}A=\begin{bmatrix}0\\1\\0\end{bmatrix}\)。
所以\(A=\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}\)。
則\(A^{2}=\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}=\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}\)。
所以\(A^{2}\begin{bmatrix}1\\0\\ -1\end{bmatrix}=\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}\begin{bmatrix}1\\0\\ -1\end{bmatrix}=\begin{bmatrix}-1\\1\\0\end{bmatrix}\)。
答案為(2)。 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by