<多選題>設\(f(x)=-x^{2}+499\),且\(A=\int_{0}^{10}f(x)dx\),\(B=\sum\limits_{n = 0}^{9}f(n)\),\(C=\sum\limits_{n = 1}^{10}f(n)\),\(D=\sum\limits_{n = 0}^{9}\frac{f(n)+f(n + 1)}{2}\)。試選出正確的選項。
(1)\(A\)表示在坐標平面上函數\(y=-x^{2}+499\)的圖形與直線\(y = 0\)、\(x = 0\)、\(x = 10\)所圍成的有界區域的面積
(2)\(B\lt C\)
(3)\(B\lt A\)
(4)\(C\lt D\)
(5)\(A\lt D\)
(1) ○:\( A = \int_{0}^{10} f(x)dx \),代表曲線 \( y=f(x) \) 與直線 \( x=0、x=10、y=0 \) 所圍區域的面積。
(2) ×:
\[
B = \sum_{n=0}^{9} f(n) = f(0)+f(1)+\dots+f(9) = 499 \times 10 - (1^2+2^2+\dots+9^2) = 4705
\]
\[
C = \sum_{n=1}^{10} f(n) = f(1)+f(2)+\dots+f(10) = 499 \times 10 - (1^2+2^2+\dots+10^2) = 4605
\]
故 \( B > C \)。
(3) ×:計算積分 \( A \):
\[
A = \int_{0}^{10} (-x^2 + 499)dx = \left. \left(-\frac{1}{3}x^3 + 499x\right) \right|_{0}^{10} = 4990 - \frac{1000}{3} = \frac{13970}{3} \approx 4656.67 < B
\]
(4) ○:定義梯形和 \( D \):
\[
D = \sum_{n=0}^{9} \frac{f(n)+f(n+1)}{2} = \frac{1}{2}\left[ f(0)+2f(1)+2f(2)+\dots+2f(9)+f(10) \right]
\]
化簡得:
\[
D = \frac{1}{2}\left[ f(0)+f(10) + 2\sum_{n=1}^{9} f(n) \right]
\]
因此:
\[
D < f(0) + \sum_{n=1}^{9} f(n) = \sum_{n=0}^{9} f(n) = B
\]
且
\[
D > \sum_{n=1}^{9} f(n) + f(10) = \sum_{n=1}^{10} f(n) = C
\]
(5) ×:計算 \( D \) 的值:
\[
D = \frac{1}{2}\left[ f(0)+f(10) + \sum_{n=1}^{9} f(n) \right] = \frac{1}{2} \times 399 + 4705 - \frac{1}{2} \times 499 = 4655 < A
\]
故選 \( \boxed{(1)(4)} \)。
