<多選>坐標空間中,有\(\overset{\rightharpoonup}{a}\)、\(\overset{\rightharpoonup}{b}\)、\(\overset{\rightharpoonup}{c}\)、\(\overset{\rightharpoonup}{d}\)四個向量,滿足外積\(\overset{\rightharpoonup}{a}×\overset{\rightharpoonup}{b}=\overset{\rightharpoonup}{c}\),\(\overset{\rightharpoonup}{a}×\overset{\rightharpoonup}{c}=\overset{\rightharpoonup}{d}\),且\(\overset{\rightharpoonup}{a}\)、\(\overset{\rightharpoonup}{b}\)、\(\overset{\rightharpoonup}{c}\)的向量長度均為4。設向量\(\overset{\rightharpoonup}{a}\)與\(\overset{\rightharpoonup}{b}\)的夾角為\(\theta\)(其中\(0\leq\theta\leq\pi\)),試選出正確的選項。
(1)\(\cos\theta=\frac{1}{4}\)
(2)\(\overset{\rightharpoonup}{a}\)、\(\overset{\rightharpoonup}{b}\)、\(\overset{\rightharpoonup}{c}\)所張出的平行六面體的體積為16
(3)\(\overset{\rightharpoonup}{a}\)、\(\overset{\rightharpoonup}{c}\)、\(\overset{\rightharpoonup}{d}\)兩兩互相垂直
(4)\(\overset{\rightharpoonup}{d}\)的長度等於4
(5)\(\overset{\rightharpoonup}{b}\)與\(\overset{\rightharpoonup}{d}\)的夾角等於\(\theta\)
(1) ×:由 \( \vec{a} \times \vec{b} = \vec{c} \),得 \( |\vec{a} \times \vec{b}| = |\vec{c}| \),即:
\[
|\vec{a}||\vec{b}|\sin\theta = |\vec{c}| \implies 4 \times 4 \times \sin\theta = 4 \implies \sin\theta = \frac{1}{4}
\]
故 \( \cos\theta = \pm \frac{\sqrt{15}}{4} \)。
(2) ○:\( \vec{a}、\vec{b}、\vec{c} \) 張出的平行六面體體積為:
\[
|\vec{c} \cdot (\vec{a} \times \vec{b})| = |\vec{c} \cdot \vec{c}| = |\vec{c}|^2 = 4^2 = 16
\]
(3) ○:由 \( \vec{a} \times \vec{b} = \vec{c} \),知 \( \vec{c} \perp \vec{a} \) 且 \( \vec{c} \perp \vec{b} \);
由 \( \vec{a} \times \vec{c} = \vec{d} \),知 \( \vec{d} \perp \vec{a} \) 且 \( \vec{d} \perp \vec{c} \);
故 \( \vec{a}、\vec{c}、\vec{d} \) 兩兩互相垂直。
(4) ×:由 \( \vec{a} \times \vec{c} = \vec{d} \),得 \( |\vec{a} \times \vec{c}| = |\vec{d}| \),又 \( \vec{a} \perp \vec{c} \)(\( \theta = \frac{\pi}{2} \)),故:
\[
|\vec{a}||\vec{c}|\sin\frac{\pi}{2} = |\vec{d}| \implies 4 \times 4 \times 1 = |\vec{d}| \implies |\vec{d}| = 16
\]
(5) ×:由 \( \vec{a} \times \vec{c} = \vec{d} \),得 \( |\vec{b} \cdot (\vec{a} \times \vec{c})| = |\vec{b} \cdot \vec{d}| \),即:
\[
|\vec{b} \cdot \vec{d}| = 16 \implies |\vec{b}||\vec{d}|\cos\alpha = 16 \implies 4 \times 16 \times |\cos\alpha| = 16 \implies |\cos\alpha| = \frac{1}{4}
\]
故 \( \cos\alpha \neq \cos\theta \)。
故選 \( \boxed{(2)(3)} \)。

