Posted in

108指考數學甲試題-非選擇一(2)


<非選擇題>坐標空間中以\(o\)表示原點,給定兩向量\(\overrightarrow{OA}=(1,\sqrt{2},1)\)、\(\overrightarrow{OB}=(2,0,0)\)。試回答下列問題。
承(1),已知滿足此條件的所有點\(P\)均落在一平面\(E\)上,試求平面\(E\)的方程式。(2分)

答案

設\(P(x,y,z)\),\(\overrightarrow{OP}=(x,y,z)\),由(1)知\(\overrightarrow{OA}\cdot\overrightarrow{OP}=2\),且\(\overrightarrow{OA}=(1,\sqrt{2},1)\)。
所以\(\overrightarrow{OA}\cdot\overrightarrow{OP}=x+\sqrt{2}y + z = 2\)。
故平面\(E\)的方程式為\(x+\sqrt{2}y + z - 2 = 0\)。


發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *