<非選擇題>坐標空間中,設\(E\)為過原點且由向量\(\vec{u}=(2,0,1)\)、\(\vec{v}=(0,1,1)\)所張出的平面。將空間中兩點\(A\)、\(B\)垂直投影到平面\(E\)上,所得投影點依序為\(A’\)、\(B’\)兩點。已知\(\overrightarrow{AB}\cdot\vec{u}=5\),\(\overrightarrow{AB}\cdot\vec{v}=2\),若\(\overrightarrow{A’B’}=\alpha\vec{u}+\beta\vec{v}\),試求實數\(\alpha\),\(\beta\)之值。(6分)
已知\(\overrightarrow{A'B'}=\alpha\vec{u}+\beta\vec{v}\),\(\vec{u}=(2,0,1)\),\(\vec{v}=(0,1,1)\),所以\(\overrightarrow{A'B'}=(2\alpha,\beta,\alpha+\beta)\)。
由(2)知\(\overrightarrow{A'B'}\cdot\vec{u}=\overrightarrow{AB}\cdot\vec{u}=5\),即\((2\alpha,\beta,\alpha+\beta)\cdot(2,0,1)=5\),可得\(4\alpha+\alpha+\beta = 5\),即\(5\alpha+\beta = 5\) ①;
又\(\overrightarrow{A'B'}\cdot\vec{v}=\overrightarrow{AB}\cdot\vec{v}=2\),即\((2\alpha,\beta,\alpha+\beta)\cdot(0,1,1)=2\),可得\(\beta+\alpha+\beta = 2\),即\(\alpha + 2\beta = 2\) ②。
由①\(\times2 -\)②得:\(10\alpha + 2\beta - (\alpha + 2\beta)=10 - 2\),\(9\alpha = 8\),解得\(\alpha=\frac{8}{9}\)。
把\(\alpha=\frac{8}{9}\)代入①得:\(5\times\frac{8}{9}+\beta = 5\),\(\beta = 5 - \frac{40}{9}=-\frac{5}{9}\)。
所以\(\alpha=\frac{8}{9}\),\(\beta =-\frac{5}{9}\)。 報錯
ChatGPT DeepSeek

