<選填>從6、8、10、12中任取三個相異數字,作為三角形的三邊長,且設此三角形的最大內角為\(\theta\)。在所有可能構成的三角形中,\(\cos\theta\)的最小值為 (化成最簡分數)
答案
從6、8、10、12中任取三個相異數字構成三角形,根據大邊對大角,要使\(\cos\theta\)最小,則最大邊所對的角最大。
由餘弦定理\(\cos\theta=\frac{a^{2}+b^{2}-c^{2}}{2ab}\)(\(c\)為最大邊)。
分別討論:
若取6、8、10,\(\cos\theta=\frac{6^{2}+8^{2}-10^{2}}{2\times6\times8}=0\);
若取6、8、12,\(\cos\theta=\frac{6^{2}+8^{2}-12^{2}}{2\times6\times8}=-\frac{11}{24}\);
若取6、10、12,\(\cos\theta=\frac{6^{2}+10^{2}-12^{2}}{2\times6\times10}=-\frac{5}{15}=-\frac{1}{3}\);
若取8、10、12,\(\cos\theta=\frac{8^{2}+10^{2}-12^{2}}{2\times8\times10}=\frac{64 + 100 - 144}{160}=\frac{1}{8}\)。
所以\(\cos\theta\)的最小值為\(-\frac{11}{24}\) 。 報錯
ChatGPT DeepSeek



