<多選>設z為非零複數,且設\(\alpha = |z|\)、\(\beta\)為z的輻角,其中\(0 \leq \beta \lt 2\pi\)(其中\(\pi\)為圓周率)。
對任一正整數n,設實數\(x_{n}\)與\(y_{n}\)分別為\(z^{n}\)的實部與虛部。試選出正確選項。
(1) 若\(\alpha = 1\)且\(\beta = \frac{3\pi}{7}\),則\(x_{10} = x_{3}\)
(2) 若\(y_{3} = 0\),則\(y_{6} = 0\)
(3) 若\(x_{3} = 1\),則\(x_{6} = 1\)
(4) 若數列\(\{y_{n}\}\)收斂,則\(\alpha \leq 1\)
(5) 若數列\(\{x_{n}\}\)收斂,則數列\(\{y_{n}\}\)也收斂
選項(1)
由棣美弗定理,\(z = \cos\frac{3\pi}{7} + i\sin\frac{3\pi}{7}\),則\(x_{10} = \cos\left(10 \times \frac{3\pi}{7}\right) = \cos\frac{2\pi}{7}\),\(x_3 = \cos\left(3 \times \frac{3\pi}{7}\right) = \cos\frac{9\pi}{7}\)。
因\(\cos\frac{2\pi}{7} \neq \cos\frac{9\pi}{7}\),故\(x_{10} \neq x_3\),(1)錯誤。
選項(2)\(z^3 = \alpha^3(\cos3\beta + i\sin3\beta)\),\(y_3 = 0 \implies \sin3\beta = 0\),即\(3\beta = k\pi\)(\(k \in \mathbb{Z}\)),\(\beta = \frac{k\pi}{3}\)。
代入\(z^6 = \alpha^6(\cos6\beta + i\sin6\beta)\),得\(6\beta = 2k\pi\),此時\(\sin6\beta = 0\),故\(y_6 = 0\),(2)正確。
選項(3)\(z^3 = \alpha^3(\cos3\beta + i\sin3\beta)\),\(x_3 = 1 \implies \alpha^3\cos3\beta = 1\)。
但\(z^6 = \alpha^6(\cos6\beta + i\sin6\beta)\)中,\(\alpha^6\cos6\beta\)未必等於1。例如,取\(\alpha = \sqrt[3]{2}\),\(\cos3\beta = \frac{1}{\sqrt[3]{4}}\),此時\(\cos6\beta\)無法保證\(\alpha^6\cos6\beta = 1\),(3)錯誤。
選項(4)\(y_n = \alpha^n\sin(n\beta)\)。若\(\alpha > 1\),\(\alpha^n\)趨向無窮,\(y_n\)因\(\sin(n\beta)\)振盪而不收斂;若\(\alpha \leq 1\),\(\alpha^n \to 0\)(\(\alpha < 1\))或穩定(\(\alpha = 1\)),此時\(y_n\)收斂。
因此,\(\{y_n\}\)收斂 \(\implies \alpha \lt 1\),(4)錯誤。
選項(5)$\because \alpha\lt1\therefore \{y_n\}收斂$(5)正確。 報錯
ChatGPT DeepSeek


