<單選>考慮實數二階方陣 \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\),若 \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ -9 & -7 \end{bmatrix}\),則 \(c – 2b\) 的值為何?
(1) -11
(2) -4
(3) 1
(4) 10
(5) 11
1. 逐步計算矩陣乘法:
- 先計算 \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} a \times 1 + b \times 0 & a \times 0 + b \times (-2) \\ c \times 1 + d \times 0 & c \times 0 + d \times (-2) \end{bmatrix} = \begin{bmatrix} a & -2b \\ c & -2d \end{bmatrix}\)
- 再計算 \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} a & -2b \\ c & -2d \end{bmatrix} = \begin{bmatrix} 0 \times a + 1 \times c & 0 \times (-2b) + 1 \times (-2d) \\ 1 \times a + 0 \times c & 1 \times (-2b) + 0 \times (-2d) \end{bmatrix} = \begin{bmatrix} c & -2d \\ a & -2b \end{bmatrix}\)
2. 對應等式 \(\begin{bmatrix} c & -2d \\ a & -2b \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ -9 & -7 \end{bmatrix}\),可得:
- \(c = 3\)
- \(-2b = -7 \implies b = \frac{7}{2}\)
3. 計算 \(c - 2b\):
\(c - 2b = 3 - 2 \times \frac{7}{2} = 3 - 7 = -4\),故答案為(2)。 報錯
ChatGPT DeepSeek
https://www.ceec.edu.tw/files/file_pool/1/0n045357541158913049/04-112%e5%ad%b8%e6%b8%ac%e6%95%b8%e5%ad%b8b%e9%81%b8%e6%93%87%28%e5%a1%ab%29%e9%a1%8c%e7%ad%94%e6%a1%88.pdf
