Posted in

112學測數學B試題-14


<選填>從 \(1\) 到 \(20\) 的 \(20\) 個整數中,取出相異的 \(3\) 個數 \(a\)、\(b\)、\(c\),使其成為等差數列,且 \(a\lt b\lt c\),則 \((a, b, c)\) 的取法有 \(\underline{○14 – 1}\ \underline{○14 – 2}\) 種。

答案

設等差數列公差為 \(d\),\(b = a + d\),\(c = a + 2d\)。因為 \(1\leqslant a\lt b\lt c\leqslant20\),\(c=a + 2d\leqslant20\),\(a\geqslant1\),\(d\geqslant1\)。當 \(d = 1\) 時,\(a\) 最小為 \(1\),\(c=a + 2\leqslant20\),\(a\) 最大為 \(18\),有 \(18\) 種;當 \(d = 2\) 時,\(a\) 最小為 \(1\),\(c=a + 4\leqslant20\),\(a\) 最大為 \(16\),有 \(16\) 種;\(\cdots\);當 \(d = 9\) 時,\(a\) 最小為 \(1\),\(c=a + 18\leqslant20\),\(a\) 最大為 \(2\),有 \(2\) 種。總取法為 \(2 + 4+\cdots+18=\frac{9\times(2 + 18)}{2}=90\) 種。即 \(\underline{○14 - 1}=90\),\(\underline{○14 - 2}=0\)。 報錯
ChatGPT    DeepSeek


https://www.ceec.edu.tw/files/file_pool/1/0n045357541158913049/04-112%e5%ad%b8%e6%b8%ac%e6%95%b8%e5%ad%b8b%e9%81%b8%e6%93%87%28%e5%a1%ab%29%e9%a1%8c%e7%ad%94%e6%a1%88.pdf

我要來個錯題通知
Powered by