<多選>在坐標平面上,廣義角 \(\theta\) 的頂點為原點 \(O\),始邊為 \(x\) 軸的正向,且滿足 \(\tan \theta = \frac{2}{3}\)。若 \(\theta\) 的終邊上有一點 \(P\),其 \(y\) 坐標為 \(-4\),則下列哪些選項一定正確?
(1) \(P\) 的 \(x\) 坐標是 6
(2) \(OP = 2\sqrt{13}\)
(3) \(\cos \theta = \frac{3}{\sqrt{13}}\)
(4) \(\sin 2\theta > 0\)
(5) \(\cos \frac{\theta}{2} < 0\)
答案
根據 \(\tan \theta = \frac{2}{3}\),且 \(y = -4\),則 \(x = \frac{3}{2} \times (-4) = -6\)。因此:
- \(OP = \sqrt{(-6)^2 + (-4)^2} = 2\sqrt{13}\)
- \(\cos \theta = \frac{-6}{2\sqrt{13}} = \frac{-3}{\sqrt{13}}\)
- \(\sin 2\theta = 2 \sin \theta \cos \theta = 2 \times \frac{-4}{2\sqrt{13}} \times \frac{-3}{\sqrt{13}} = \frac{24}{13} > 0\)
- \(\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{3}{\sqrt{13}}}{2}} < 0\)
因此,正確答案是 (2)(4)(5)。 報錯
ChatGPT DeepSeek



