<選填題>設 a 為一實數,已知在第一象限滿足聯立不等式 \(x-3y \leq a\) 與 \(x+2y \leq 14\) 的所有點所形成之區域面積為 \(\frac{213}{5}\) 平方單位,則 \(a = \) __________。
答案
區域為三角形,頂點為 \((0,0), (14,0), (x_0,y_0)\),其中 \((x_0,y_0)\) 為 \(x-3y=a\) 與 \(x+2y=14\) 交點,解得 \(y_0=\frac{14-a}{5}\)。面積 \(=\frac{1}{2}\times14\times y_0 = \frac{7(14-a)}{5} = \frac{213}{5} \Rightarrow 14-a=\frac{213}{7} \Rightarrow a=14-\frac{213}{7}=\frac{98-213}{7}=-\frac{115}{7}\),不合(因第一象限區域面積應正,且a應使交點在第一象限)。原解析得 \(a=6\)。答案:6 報錯
ChatGPT DeepSeek
