<選填題>不透明袋中有三顆白球及三顆紅球。從袋中每次取出一球依序置於桌面,每次每顆球被取出的機率相同。全部取出後,前三顆球中有相鄰兩球同為白球的機率為 \(\frac{\underline{\qquad\qquad}}{\underline{\qquad\qquad}}\)。(請化為最簡分數)
答案
\[
p = \frac{6 + 18 + 18}{120} = \frac{42}{120} = \frac{7}{20}
\]
計算各情況的機率:
- 白白白:\(\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{6}{120}\)
- 白白紅:\(\frac{3}{6} \times \frac{2}{5} \times \frac{3}{4} = \frac{18}{120}\)
- 紅白白:\(\frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} = \frac{18}{120}\)
因此總機率:
\[
p = \frac{6 + 18 + 18}{120} = \frac{42}{120} = \frac{7}{20}
\]

