Posted in

107指考數學乙試題-3)


<非選擇題>(3) 若方程式 \( f(x) = 0 \) 有相異實根,試證兩根之積小於 4。

答案

設 \( f(x) = a(x+2)^2 + b \),且 \( f(x) = 0 \) 有兩相異實根 \( \alpha, \beta \)。
由 \( a(x+2)^2 + b = 0 \Rightarrow a(x^2 + 4x + 4) + b = 0 \Rightarrow ax^2 + 4a x + (4a+b) = 0 \)。
根與係數:\( \alpha\beta = \frac{4a+b}{a} = 4 + \frac{b}{a} \)。
由 (2) 知 \( \frac{b}{a} \lt 0 \),所以 \( \alpha\beta \lt 4 \)。
得證。 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by