Posted in

109指考數學乙(補考)-非選擇二(1)


<非選擇題>二. 等比數列 \( \langle a_n \rangle \) 的前三項可表為 \(\begin{cases} a_1 = x^2 + x + 3 \\ a_2 = 2x + 2 \\ a_3 = x + 2 \end{cases}\),其中 \( x \) 為實數。試回答下列問題。
(1) 試求 \( x \) 的所有可能值。

答案

$\begin{align*}
&(1) \ 因為\{a_n\}是等比數列,故\frac{a_2}{a_1}=\frac{a_3}{a_2},代入得: \\
&\frac{2x+2}{x^2+x+3}=\frac{x+2}{2x+2} \implies (x+2)(x^2+x+3)=(2x+2)^2 \\
&\implies x^3 + 3x^2 + 5x + 6 = 4x^2 + 8x + 4 \implies x^3 - x^2 - 3x + 2 = 0 \\
\\
&用牛頓有理根檢驗法,可能有理根為\pm1,\pm2,代入得x=2是根,因式分解為: \\
&(x-2)(x^2+x-1)=0 \implies 解為 \ x=2,\ \frac{-1\pm\sqrt{5}}{2}
\end{align*}$


發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *