Posted in

109指考數學乙(補考)試題-02


<單選題>在坐標平面上,\( O \) 為原點,考慮直線 \( L_1: 5x+3y=5 \) 與直線 \( L_2: 3x+2y=6-2a \),其中 \( a \) 為實數。若直線 \( L: 2x+y=3 \) 分別與直線 \( L_1 \) 及直線 \( L_2 \) 交於點 \( A \) 及點 \( B \),則三角形 \( OAB \) 的面積為下列哪一個選項?
(1) \( \frac{1}{2} |a-2| \)
(2) \( |a-2| \)
(3) \( 2|a-2| \)
(4) \( 3|a-2| \)
(5) \( 6|a-2| \)

答案

求A點:解 \( \begin{cases} 5x+3y=5 \\ 2x+y=3 \end{cases} \),得 \( x=4 \),\( y=-5 \),故 \( A(4,-5) \)
求B點:解 \( \begin{cases} 3x+2y=6-2a \\ 2x+y=3 \end{cases} \),得 \( x=2a \),\( y=3-4a \),故 \( B(2a,3-4a) \)
三角形OAB面積 = \( \frac{1}{2} |x_A y_B - x_B y_A| = \frac{1}{2} |4(3-4a) - 2a(-5)| = \frac{1}{2} |12-16a+10a| = \frac{1}{2} |12-6a| = 3|2-a| = 3|a-2| \)
答案:(4) 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by