<非選擇題>二、已知某廠商生產甲、乙兩型電動車所需的成本有電池、馬達、其他等三大類,甲、乙兩型的各類成本如下表(單位:萬元):
| 電池成本 | 馬達成本 | 其他成本 | |
| 甲型 | 56 | 26 | 48 |
| 乙型 | 40 | 20 | 56 |
今該廠商甲、乙兩型電動車售價的算式為「電池成本的x倍」、「馬達成本的y倍」與「其他成本的 \(\frac{x+y}{2}\) 倍」之總和,即
售價=電池成本 \(\times x+\) 馬達成本 \(\times y+\) 其他成本 \(\times \frac{x+y}{2}\)
其中倍數 \(x,y\) 需滿足「\(1\leq x\leq 2\),\(1\leq y\leq 2\)」,且甲、乙兩型電動車的售價均不超過200萬元。
該廠商為了區隔產品,希望甲、乙兩型電動車的售價差距最大。根據上述資訊,試回答下列問題。
(1) 試寫出甲、乙兩型電動車的售價(以\(x,y\)的式子來表示),並說明「甲型電動車的售價必定高於乙型電動車的售價」。
答案
甲型售價:\(56x + 26y + 48\times\frac{x+y}{2} = 56x + 26y + 24x + 24y = 80x + 50y\)
乙型售價:\(40x + 20y + 56\times\frac{x+y}{2} = 40x + 20y + 28x + 28y = 68x + 48y\)
售價差距:\((80x+50y) - (68x+48y) = 12x + 2y\)
由於 \(x\geq 1\),\(y\geq 1\),故 \(12x+2y \geq 12+2=14 > 0\)
因此甲型售價必定高於乙型售價
答案:甲型 \(80x+50y\),乙型 \(68x+48y\),差距恆正 報錯
ChatGPT DeepSeek

