Posted in

111分科數學甲試題-04


<多選>設多項式\(f(x)=x^{3}+2x^{2}-2x + k\) ,\(g(x)=x^{2}+ax + 1\) ,其中\(k\),\(a\)為實數。已知\(g(x)\)整除\(f(x)\) ,且方程式\(g(x)=0\)有虛根。試選出為方程式\(f(x)=0\)的根之選項。(1)\(-3\)(2)\(0\)(3)\(1\)(4)\(\frac{1+\sqrt{-3}}{2}\)(5)\(\frac{3+\sqrt{-5}}{2}\)

答案

因為\(g(x)\)整除\(f(x)\),設\(f(x)=(x + m)(x^{2}+ax + 1)=x^{3}+(a + m)x^{2}+(am + 1)x + m\) 。
對比\(f(x)=x^{3}+2x^{2}-2x + k\)的係數可得:\(a + m = 2\),\(am + 1=-2\) ,解聯立方程得\(m = 3\),\(a=-1\) 。
所以\(f(x)=(x + 3)(x^{2}-x + 1)\) ,對於一元二次方程\(x^{2}-x + 1 = 0\),由求根公式\(x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}\)(此處\(a = 1\),\(b=-1\),\(c = 1\))可得根為\(x=\frac{1\pm\sqrt{1 - 4}}{2}=\frac{1\pm\sqrt{-3}}{2}\) ,所以\(f(x)=0\)的根為\(-3\),\(\frac{1+\sqrt{-3}}{2}\) ,答案為(1)(4)。 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by