<單選>設\(c\)為實數使得三元一次方程組$\begin{cases}x – y + z = 0\\2x + cy + 3z = 1\\3x – 3y + cz = 0\end{cases}$無解。試選出\(c\)之值。
(1)\(-3\)(2)\(-2\)(3)\(0\)(4)\(2\)(5)\(3\)
答案
對於三元一次方程組\(\begin{cases}A_{1}x + B_{1}y + C_{1}z = D_{1}\\A_{2}x + B_{2}y + C_{2}z = D_{2}\\A_{3}x + B_{3}y + C_{3}z = D_{3}\end{cases}\),其係數行列式\(\Delta=\begin{vmatrix}A_{1}&B_{1}&C_{1}\\A_{2}&B_{2}&C_{2}\\A_{3}&B_{3}&C_{3}\end{vmatrix}\)。
此方程組中\(\Delta=\begin{vmatrix}1&-1&1\\2&c&3\\3&-3&c\end{vmatrix}=c^{2}-3c - 10\),令\(\Delta = 0\),即\((c - 5)(c + 2)=0\) ,解得\(c = 5\)或\(c=-2\) 。
當\(c=-2\)時,方程組中前兩個方程相加得\(3x + z = 1\),第三個方程為\(3x - 3y - 2z = 0\),此時方程組無解,答案為(2)。 報錯
ChatGPT DeepSeek
