<選填題>設 \( O \cdot A \cdot B \) 為坐標平面上不共線三點,其中向量 \(\overrightarrow{OA}\) 垂直 \(\overrightarrow{OB}\)。若 \( C \cdot D \) 兩點在直線 \( AB \) 上,滿足 \(\overrightarrow{OC} = \frac{3}{5}\overrightarrow{OA} + \frac{2}{5}\overrightarrow{OB} \cdot 3AD = 8BD\),且 \(\overrightarrow{OC}\) 垂直 \(\overrightarrow{OD}\),則 \(\frac{\overrightarrow{OB}}{\overrightarrow{OA}} = \) __________。(化為最簡分數)
答案
設 \( O(0,0) \), \( A(a,0) \), \( B(0,b) \),則 \( C(\frac{3}{5}a, \frac{2}{5}b) \), \( D(-\frac{3}{5}a, \frac{8}{5}b) \)
由 \( \overrightarrow{OC} \perp \overrightarrow{OD} \) 得 \( (\frac{3}{5}a, \frac{2}{5}b) \cdot (-\frac{3}{5}a, \frac{8}{5}b) = 0 \)
⇒ \( -\frac{9}{25}a^2 + \frac{16}{25}b^2 = 0 \Rightarrow \frac{b^2}{a^2} = \frac{9}{16} \Rightarrow \frac{b}{a} = \frac{3}{4} \)
故 \( \frac{\overrightarrow{OB}}{\overrightarrow{OA}} = \frac{3}{4} \) 報錯
ChatGPT DeepSeek

