Posted in

112分科測驗數學甲考科試題-10


<選填>坐標空間中有方向向量為 (1, -2, 2) 的直線 \(L\) 、平面 \(E_1: 2x + 3y + 6z = 10\) 與平面
\(E_2: 2x + 3y + 6z = -4\) 。則 \(L\) 被 \(E_1\) 、 \(E_2\) 所截線段的長度為 \(\frac{~~~~~}{~~~~~}\)。(化為最簡分數)

答案

兩平面\(E_1: 2x + 3y + 6z = 10\)與\(E_2: 2x + 3y + 6z = -4\)平行,先求兩平面距離:\(d = \frac{|10 - (-4)|}{\sqrt{2^2 + 3^2 + 6^2}} = \frac{14}{7} = 2\)
直線方向向量\(\vec{v} = (1, -2, 2)\),平面法向量\(\vec{n} = (2, 3, 6)\)。計算\(\vec{v} \cdot \vec{n} = 8\),\(|\vec{v}| = 3\),\(|\vec{n}| = 7\),得\(\sin\theta = \frac{|\vec{v} \cdot \vec{n}|}{|\vec{v}| |\vec{n}|} = \frac{8}{21}\)。
截得線段長度\(L = \frac{d}{\sin\theta} = \frac{2}{\frac{8}{21}} = \frac{21}{4}\)。最終答案:\(\boxed{\dfrac{21}{4}}\) 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by