<多選題>
設\(A,B,C\)為圓\(x^2+y^2=4\)上的點,O 為圓心,若\(OA \perp OB\)且內積\(\overset{\rightharpoonup}{OA} \cdot \overset{\rightharpoonup}{OC} \gt \frac{5}{2}\),則下列哪些選項可能為內積\(\overset{\rightharpoonup}{OB} \cdot \overset{\rightharpoonup}{OC}\)之值?
(1)\(-4\)
(2)\(\frac{-3}{2}\)
(3)0
(4)\(\frac{\sqrt{39}}{2}\)
(5)\(\frac{7}{2}\)
答案
(2)(3)
設\(A(2,0), B(0,2)\),\(OA \cdot OC = 4\cos\theta \gt 5/2 \Rightarrow \cos\theta \gt 5/8\)。則\(OB \cdot OC = 4\cos(90^\circ \pm \theta) = \mp4\sin\theta\)。由\(\cos\theta \gt 5/8\)得\(\sin\theta \lt \sqrt{39}/8\),故\(|OB \cdot OC| \lt \sqrt{39}/2 \approx 3.12\)。可能值為\(-3/2\)與 0。


