Posted in

114分科測驗數學乙考科試卷-06


<單選題>試選出\(\sum\limits_{k=1}^{5}\log_7\left(\frac{2k-1}{2k+1}\right)\) 的值?
(1) \(\log11 – 2log(2k+1)\)(題目表述修正)
(2) \(\log11\)
(3) \(\log\frac{11}{7}\)
(4) \(-\frac{\log11}{\log7}\)
(5) \(\frac{\log11}{\log7}\)

答案

我們要計算
\[
\sum_{k=1}^5 \log_7 \left( \frac{2k-1}{2k+1} \right)
\]

將各項寫出:
\[
\log_7 \left( \frac{1}{3} \right) + \log_7 \left( \frac{3}{5} \right) + \log_7 \left( \frac{5}{7} \right) + \log_7 \left( \frac{7}{9} \right) + \log_7 \left( \frac{9}{11} \right)
\]

利用對數性質合併:
\[
= \log_7 \left( \frac{1}{3} \times \frac{3}{5} \times \frac{5}{7} \times \frac{7}{9} \times \frac{9}{11} \right)
\]

分子分母相消後得到:
\[
= \log_7 \left( \frac{1}{11} \right) = -\log_7 11
\]

換底公式:
\[
\log_7 11 = \frac{\log 11}{\log 7}
\]

所以結果為:
\[
-\frac{\log 11}{\log 7}
\]

對應選項 (4)。

\[
\boxed{4}
\] 報錯
ChatGPT    DeepSeek


  • 試題內容
  • 試題內容
  • 答題卷
  • 選擇(填)題答案
  • 我要來個錯題通知
    Powered by