Posted in

114學測數學A考科_17


<選填題>\(\triangle ABC\) 中,已知 \(\overline{AB} = \overline{BC} = 3\),\(\cos \angle ABC = -\frac{1}{8}\)。在 \(\triangle ABC\) 的外接圓上有一點 \(D\) 滿足 \(\overline{BD} = 4\),且 \(\overline{AD} \leq \overline{CD}\),則 \(\overline{CD} = \) __________。(化為最簡根式)

答案

由餘弦定理得 \(\overline{AC}=\sqrt{3^2+3^2-2\cdot3\cdot3\cdot(-\frac{1}{8})}=\frac{3\sqrt{10}}{2}\)。
在 \(\triangle BCD\) 中,利用圓周角相等及餘弦定理得 \(\overline{CD}^2-6\overline{CD}+7=0\),解得 \(\overline{CD}=3+\sqrt{2}\)(因 \(\overline{AD} \leq \overline{CD}\))。 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by