Posted in

110指考數學甲試題-04


<多選>某電子公司有數百名員工,其用餐方式分為自備、外食兩種。經長期調查發現:若當日用餐為自備的員工,則隔天會有10%轉為外食;若當日用餐為外食的員工,則隔天會有20%轉為自備。假設\(x_{0}\)、\(y_{0}\)分別代表該公司今日用餐自備人數與外食人數占員工總人數的比例,其中\(x_{0}\)、\(y_{0}\)皆為正數,且\(x_{n}\)、\(y_{n}\)分別代表經過\(n\)日後用餐自備人數與外食人數占員工總人數的比例。在該公司員工不變動的情形下,試選出正確的選項。
(1)\(y_{1}=0.9y_{0}+0.2x_{0}\)
(2)\(\begin{bmatrix}x_{n + 1}\\y_{n + 1}\end{bmatrix}=\begin{bmatrix}0.9&0.2\\0.1&0.8\end{bmatrix}\begin{bmatrix}x_{n}\\y_{n}\end{bmatrix}\)
(3)若\(\frac{x_{0}}{y_{0}}=\frac{2}{1}\) ,則\(\frac{x_{n}}{y_{n}}=\frac{2}{1}\) 對任意正整數\(n\)均成立
(4)若\(y_{0}\gt x_{0}\) ,則\(y_{1}\gt x_{1}\)
(5)若\(x_{0}\gt y_{0}\) ,則\(x_{0}\gt x_{1}\)

答案

(1)今日外食的員工隔天有\(80\%\)仍外食,自備員工隔天有\(10\%\)轉為外食,所以\(y_{1}=0.8y_{0}+0.1x_{0}\) ,(1)錯誤。
(2) 自備人數\(x_{n + 1}=0.9x_{n}+0.2y_{n}\) ,外食人數\(y_{n + 1}=0.1x_{n}+0.8y_{n}\) ,用矩陣表示即\(\begin{bmatrix}x_{n + 1}\\y_{n + 1}\end{bmatrix}=\begin{bmatrix}0.9&0.2\\0.1&0.8\end{bmatrix}\begin{bmatrix}x_{n}\\y_{n}\end{bmatrix}\) ,(2)正確。
(3)若\(\frac{x_{0}}{y_{0}}=\frac{2}{1}\) ,即\(x_{0}=2y_{0}\) ,代入遞推式\(\begin{bmatrix}x_{n + 1}\\y_{n + 1}\end{bmatrix}=\begin{bmatrix}0.9&0.2\\0.1&0.8\end{bmatrix}\begin{bmatrix}x_{n}\\y_{n}\end{bmatrix}\) 可得\(\frac{x_{n}}{y_{n}}=\frac{2}{1}\) 恆成立,(3)正確。
(4) \(y_{1}-x_{1}=(0.8y_{0}+0.1x_{0})-(0.9x_{0}+0.2y_{0})=0.6y_{0}-0.8x_{0}\) ,當\(y_{0}\gt x_{0}\) 時,\(y_{1}-x_{1}\)不一定大於\(0\) ,(4)錯誤。
(5) \(x_{1}=0.9x_{0}+0.2y_{0}\) ,\(x_{0}-x_{1}=0.1x_{0}-0.2y_{0}\) ,當\(x_{0}\gt y_{0}\) 時,\(x_{0}-x_{1}\)不一定大於\(0\) ,(5)錯誤。答案為(2)(3)。 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by