<單選題>已知\(45^{\circ}\lt\theta\lt50^{\circ}\),且\(a = 1-\cos^{2}\theta\)、\(b=\frac{1}{\cos\theta}-\cos\theta\)、\(c=\frac{\tan\theta}{\tan^{2}\theta + 1}\)。關於\(a\),\(b\),\(c\)三個數值的大小,試選出正確的選項。
(1)\(a \lt b \lt c\)
(2)\(a \lt c \lt b\)
(3)\(b \lt a \lt c\)
(4)\(b \lt c \lt a\)
(5)\(c \lt a \lt b\)
因為\(a = 1-\cos^{2}\theta=\sin^{2}\theta\)。
\(b=\frac{1}{\cos\theta}-\cos\theta=\frac{1 - \cos^{2}\theta}{\cos\theta}=\frac{\sin^{2}\theta}{\cos\theta}\) ,由於\(45^{\circ}\lt\theta\lt50^{\circ}\),\(\cos\theta\in(0,1)\),所以\(b=\frac{\sin^{2}\theta}{\cos\theta}\gt\sin^{2}\theta=a\)。
\(c=\frac{\tan\theta}{\tan^{2}\theta + 1}=\frac{\frac{\sin\theta}{\cos\theta}}{\frac{\sin^{2}\theta}{\cos^{2}\theta}+1}=\frac{\sin\theta\cos\theta}{\sin^{2}\theta+\cos^{2}\theta}=\sin\theta\cos\theta\) 。
\(b - c=\frac{\sin^{2}\theta}{\cos\theta}-\sin\theta\cos\theta=\frac{\sin^{2}\theta-\sin\theta\cos^{2}\theta}{\cos\theta}=\frac{\sin\theta(\sin\theta-\cos^{2}\theta)}{\cos\theta}\) ,\(\sin\theta-\cos^{2}\theta=\sin\theta-(1 - \sin^{2}\theta)=\sin^{2}\theta+\sin\theta - 1\) ,在\(45^{\circ}\lt\theta\lt50^{\circ}\)時,\(\sin\theta\gt\frac{\sqrt{2}}{2}\),\(\sin^{2}\theta+\sin\theta - 1\gt0\),所以\(b\gt c\)。
\(c - a=\sin\theta\cos\theta-\sin^{2}\theta=\sin\theta(\cos\theta-\sin\theta)\) ,在\(45^{\circ}\lt\theta\lt50^{\circ}\)時,\(\cos\theta\lt\sin\theta\),所以\(c - a\lt0\),即\(c \lt a\)。所以\(c \lt a \lt b\),答案為(5)。 報錯
ChatGPT DeepSeek

