<選填題>在坐標空間中,設\(O\)為原點,且點\(P\)為三平面\(x – 3y – 5z = 0\)、\(x – 3y + 2z = 0\)、\(x + y = t\)的交點,其中\(t\gt0\)。若\(\vert\overrightarrow{OP}\vert = 10\),則\(t=\underline{ (9) }\sqrt{ (10)(11) }\)。(化成最簡根式)
答案
先求平面\(x - 3y - 5z = 0\)與\(x - 3y + 2z = 0\)的交線方程,兩式相減得\(-7z = 0\),即\(z = 0\),代入\(x - 3y - 5z = 0\)得\(x = 3y\)。
再將\(x = 3y\),\(z = 0\)代入\(x + y = t\),得\(3y + y = t\),\(4y = t\),\(y=\frac{t}{4}\),\(x=\frac{3t}{4}\)。
所以點\(P\)的坐標為\((\frac{3t}{4},\frac{t}{4},0)\)。
由\(\vert\overrightarrow{OP}\vert = 10\),\(\sqrt{(\frac{3t}{4})^{2}+(\frac{t}{4})^{2}+0^{2}} = 10\),\(\sqrt{\frac{9t^{2}+t^{2}}{16}} = 10\),\(\sqrt{\frac{10t^{2}}{16}} = 10\),\(\frac{\sqrt{10}}{4}\vert t\vert = 10\),因為\(t\gt0\),所以\(t = 4\sqrt{10}\) 。(原題答案格式中的空缺部分需按正確答案\(4\sqrt{10}\)對應填寫,即\(t = 4\sqrt{10}\),\(4\)填在(9),\(10\)填在(10),(11)無值 ) 報錯
ChatGPT DeepSeek
