Posted in

109指考數學甲(補考)試題-05


<多選題>下列選項中,試選出與\(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}\)相乘之後會得到實數的選項。(註:\(i=\sqrt{-1}\))
(1)\(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}\)
(2)\(\cos\frac{\pi}{7}-i\sin\frac{\pi}{7}\)
(3)\(-\sin\frac{5\pi}{14}+i\cos\frac{5\pi}{14}\)
(4)\(\sin\frac{\pi}{7}+i\cos\frac{\pi}{7}\)
(5)\(\sin\frac{\pi}{7}-i\cos\frac{\pi}{7}\)

答案

根据复数乘法的运算法则\((a + bi)(c + di)=(ac - bd)+(ad + bc)i\)。
(1)\((\cos\frac{\pi}{7}+i\sin\frac{\pi}{7})(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7})=\cos^{2}\frac{\pi}{7}-\sin^{2}\frac{\pi}{7}+2i\sin\frac{\pi}{7}\cos\frac{\pi}{7}=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}\),不是实数,(1)错误。
(2)\((\cos\frac{\pi}{7}+i\sin\frac{\pi}{7})(\cos\frac{\pi}{7}-i\sin\frac{\pi}{7})=\cos^{2}\frac{\pi}{7}+\sin^{2}\frac{\pi}{7}=1\),是实数,(2)正确。
(3)\((\cos\frac{\pi}{7}+i\sin\frac{\pi}{7})(-\sin\frac{5\pi}{14}+i\cos\frac{5\pi}{14})=-\cos\frac{\pi}{7}\sin\frac{5\pi}{14}-\sin\frac{\pi}{7}\cos\frac{5\pi}{14}+i(\cos\frac{\pi}{7}\cos\frac{5\pi}{14}-\sin\frac{\pi}{7}\sin\frac{5\pi}{14})=-\sin(\frac{\pi}{7}+\frac{5\pi}{14})+i\cos(\frac{\pi}{7}+\frac{5\pi}{14})=-\sin\frac{\pi}{2}+i\cos\frac{\pi}{2}=-1\),是实数,(3)正确。
(4)\((\cos\frac{\pi}{7}+i\sin\frac{\pi}{7})(\sin\frac{\pi}{7}+i\cos\frac{\pi}{7})=\cos\frac{\pi}{7}\sin\frac{\pi}{7}-\sin\frac{\pi}{7}\cos\frac{\pi}{7}+i(\cos^{2}\frac{\pi}{7}+\sin^{2}\frac{\pi}{7})=i\),不是实数,(4)错误。
(5)\((\cos\frac{\pi}{7}+i\sin\frac{\pi}{7})(\sin\frac{\pi}{7}-i\cos\frac{\pi}{7})=\cos\frac{\pi}{7}\sin\frac{\pi}{7}+\sin\frac{\pi}{7}\cos\frac{\pi}{7}+i(\sin\frac{\pi}{7}\sin\frac{\pi}{7}-\cos\frac{\pi}{7}\cos\frac{\pi}{7})=\sin\frac{2\pi}{7}-i\cos\frac{2\pi}{7}\),不是实数,(5)错误。
答案为(2)(3)。 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by