<多選題>已知三次實係數多項式函數\(f(x)=ax^{3}+bx^{2}+cx + 2\),在\(-2\leq x\leq1\)範圍內的圖形如示意圖。試選出正確的選項。
(1)\(a>0\)(2)\(b>0\)
(3)\(c>0\)
(4)方程式\(f(x)=0\)恰有三實根
(5)\(y = f(x)\)圖形的反曲點的\(y\)坐標為正
答案
(2)(3)(5)。
(1)錯誤,要看完整圖形。
(2) 由\(a與中心x座標-\frac{b}{3a}\)可判斷$\gt0$,(2)正確。
(3) 由\(f(x)\)的圖像可知,在\(x = 0\)處,函數的切線斜率為負。\(f'(x)=3ax^{2}+2bx + c\),\(f'(0)=c\),所以\(c<0\),(3)錯誤。
(4) 從給定區間\(-2\leq x\leq1\)的圖像能看出,函數\(y = f(x)\)的圖像與\(x\)軸有三個交點,這表明方程式\(f(x)=0\)恰有三個實根,(4)正確。
(5) 由圖形可推測,(5)O。
答案為(2)(3)(5)。
