Posted in

101學測數學考科-19


<選填>設 \(m, n\) 為正實數,橢圓 \(\frac{x^2}{m} + \frac{y^2}{n} = 1\) 的焦點分別為 \(F_1(0, 2)\) 與 \(F_2(0, -2)\)。若此橢圓上有一點 \(P\) 使得 \(\triangle PF_1F_2\) 為一正三角形,則 \(m = \boxed{~~~~~~}\),\(n = \boxed{~~~~~~}\)。

答案

根據橢圓的性質和正三角形的條件,計算 \(m\) 和 \(n\) 的值。經過計算,\(m = \boxed{12}\),\(n = \boxed{16}\)。 報錯
ChatGPT    DeepSeek


我要來個錯題通知
Powered by