Posted in

111學測數學B試題-09


<多選>設\(f(x) = 2x^{3}-3x + 1\) ,下列關於函數\(y = f(x)\)的圖形之描述,試選出正確的選項。(1) \(y = f(x)\)的圖形通過點\((1,0)\);(2) \(y = f(x)\)的圖形與\(x\)軸只有一個交點;(3) 點\((1,0)\)是\(y = f(x)\)的圖形之對稱中心;(4) \(y = f(x)\)的圖形在對稱中心附近會近似於一直線\(y = 3x – 3\);(5) \(y = 3x^{3}-6x^{2}+2x\)的圖形可由\(y = f(x)\)的圖形經適當平移得到

答案

1. 將\(x = 1\)代入\(f(x) = 2x^{3}-3x + 1\),得\(f(1)=2 - 3 + 1 = 0\),所以\(y = f(x)\)的圖形通過點\((1,0)\),(1)正確。
2. 對\(f(x)\)求導\(f^\prime(x)=6x^{2}-3\),令\(f^\prime(x)=0\),解得\(x=\pm\frac{\sqrt{2}}{2}\),\(f(x)\)在\(x\)軸上不止一個交點,(2)錯誤。
3. 三次函數\(y = ax^{3}+bx^{2}+cx + d\)的對稱中心為\((-\frac{b}{3a},f(-\frac{b}{3a}))\),\(f(x) = 2x^{3}-3x + 1\)中\(b = 0\),對稱中心為\((0,f(0))=(0,1)\),(3)錯誤。
4. 對\(f(x)\)求導\(f^\prime(x)=6x^{2}-3\),在對稱中心\((0,1)\)處斜率\(f^\prime(0)= - 3\),在對稱中心附近近似直線為\(y - 1 = - 3(x - 0)\)即\(y = - 3x + 1\),(4)錯誤。
5. \(y = 3x^{3}-6x^{2}+2x\)與\(y = 2x^{3}-3x + 1\)三次項係數不同,不能由平移得到,(5)錯誤。答案:(1) 報錯
ChatGPT    DeepSeek


https://www.ceec.edu.tw/files/file_pool/1/0m053363176747148935/04-111%e5%ad%b8%e6%b8%ac%e6%95%b8%e5%ad%b8b%e9%81%b8%e6%93%87%28%e5%a1%ab%29%e9%a1%8c%e7%ad%94%e6%a1%88.pdf

我要來個錯題通知
Powered by