Posted in

113分科測驗數學甲試題16


<非選擇>坐 標 平 面 上,設 \( \Gamma \) 為 三 次 函 數 \( f(x)=x^{3}-9x^{2}+15x – 4\) 的 函 數 圖 形。試 說明 \( P(1,3)\) 為 \( \Gamma \) 上 之 一 點,並 求 \( \Gamma \) 在 \( P\) 點的 切線 \( L\) 的 方程式。

答案

切線方程求解驗證\(P(1,3)\)在\(\Gamma\)上:
代入\(x = 1\),\(f(1) = 1^3 - 9 \cdot 1^2 + 15 \cdot 1 - 4 = 3\),故\(P(1,3)\)在\(\Gamma\)上。求切線方程:\(f'(x) = 3x^2 - 18x + 15\),\(f'(1) = 3 - 18 + 15 = 0\)。
由點斜式,切線L的方程為\(y - 3 = 0 \cdot (x - 1)\),即\(y = 3\)。


發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *