坐標平面上有一圓,其圓心為 \( A(a,b) \),且此圓與兩坐標軸皆相切,另有一點 \( P(c,c) \) 其中 \( a > c > 0 \),且已知 \( \overline{PA} = a + c \),試選出正確的選項。
(1) \( a = b \)
(2) 點 \( P \) 位於直線 \( x + y = 0 \) 上
(3) 點 \( P \) 在此圓內
(4) \( \frac{a + c}{b – c} = \sqrt{2} \)
(5) \( \frac{a}{c} = 2 + 3\sqrt{2} \)
1. 分析選項(1):
圓與兩坐標軸相切,圓心到x軸和y軸的距離相等且等於半徑,故 \( |a| = |b| = r \)。因 \( a > 0 \),且圓與軸相切的位置可推得 \( b = a \)(若 \( b = -a \) 則圓在第四象限,與 \( a > c > 0 \) 及 \( P(c,c) \) 位置不符),故 \( a = b \),選項(1)正確。
2. 分析選項(2):
點 \( P(c,c) \) 滿足 \( x = y \),即位於直線 \( x - y = 0 \) 上,而非 \( x + y = 0 \),選項(2)錯誤。
3. 分析選項(3):
圓的方程為 \( (x - a)^2 + (y - a)^2 = a^2 \)。點 \( P(c,c) \) 到圓心 \( A(a,a) \) 的距離 \( \overline{PA} = \sqrt{(a - c)^2 + (a - c)^2} = \sqrt{2}(a - c) \),已知 \( \overline{PA} = a + c \),故 \( \sqrt{2}(a - c) = a + c \),解得 \( a = (3 + 2\sqrt{2})c \)。
點 \( P \) 到圓心的距離平方為 \( 2(a - c)^2 \),圓半徑平方為 \( a^2 \)。
計算 \( 2(a - c)^2 - a^2 = 2a^2 - 4ac + 2c^2 - a^2 = a^2 - 4ac + 2c^2 \),代入 \( a = (3 + 2\sqrt{2})c \):
\( (3 + 2\sqrt{2})^2c^2 - 4(3 + 2\sqrt{2})c^2 + 2c^2 = (17 + 12\sqrt{2})c^2 - (12 + 8\sqrt{2})c^2 + 2c^2 = (7 + 4\sqrt{2})c^2 > 0 \),故點 \( P \) 在圓外,選項(3)錯誤。
4. 分析選項(4):
由 \( a = b \),且 \( \sqrt{2}(a - c) = a + c \),則 \( b - c = a - c \),\( \frac{a + c}{b - c} = \frac{a + c}{a - c} = \frac{\sqrt{2}(a - c)}{a - c} = \sqrt{2} \),選項(4)正確。
5. 分析選項(5):
由 \( \sqrt{2}(a - c) = a + c \),移項得 \( a(\sqrt{2} - 1) = c(\sqrt{2} + 1) \),\( \frac{a}{c} = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} = (\sqrt{2} + 1)^2 = 3 + 2\sqrt{2} \),而非 \( 2 + 3\sqrt{2} \),選項(5)錯誤。
综上,正確選項為(1)(4)。 報錯
ChatGPT DeepSeekhttps://www.ceec.edu.tw/files/file_pool/1/0n045357541158913049/04-112%e5%ad%b8%e6%b8%ac%e6%95%b8%e5%ad%b8b%e9%81%b8%e6%93%87%28%e5%a1%ab%29%e9%a1%8c%e7%ad%94%e6%a1%88.pdf


