矩陣 \(\begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}^5\) 與下列哪一個矩陣相等?
(1) \(\begin{bmatrix} -1 & 0 \\ -5 & -1 \end{bmatrix}\)
(2) \(\begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}\)
(3) \(\begin{bmatrix} -1 & 5 \\ 0 & -1 \end{bmatrix}\)
(4) \(\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}\)
(5) \(\begin{bmatrix} -1 & 0 \\ 5 & -1 \end{bmatrix}\)
設 \( A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \),觀察矩陣冪次規律:
\( A^2 = A \cdot A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \)
\( A^3 = A^2 \cdot A = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 3 & -1 \end{bmatrix} \)
\( A^4 = A^3 \cdot A = \begin{bmatrix} -1 & 0 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \)
\( A^5 = A^4 \cdot A = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 5 & -1 \end{bmatrix} \),故答案為(5)。 報錯
ChatGPT DeepSeek


