Posted in

112分科測驗數學甲考科試題-11

百貨公司舉辦父親節抽牌送獎品活動,規則如下:主辦單位準備編號1、2、…、9的牌卡十張,其中編號8 的牌卡有兩張,其他編號的牌卡均只有一張。從這十張牌隨機抽出四張,且抽出不放回,依抽出順序由左至右排列成一個四位數。若排成的四位數滿足下列任一個條件,就可獲得獎品:
(1) 此四位數大於6400
(2) 此四位數含有兩個數字8
例如:若抽出四張牌編號依序為5、8、2、8,則此四位數為5828,可獲得獎品。
依上述規則,共有
\(\boxed{11-1}\)
\(\boxed{11-2}\)
個抽出排成的四位數可獲得獎品。

答案

$\begin{cases}恰有兩個8:C^4_2\times8\times7=336\\大於6400且最多只有一個8:\overset{64xx,65xx,67xx,68xx,69xx}{7\times6\times5}+\overset{7xxx,8xxx,9xxx}{8\times7\times6\times3}\end{cases}=1218$。答案為 $336+1218=1554$。 報錯
ChatGPT    DeepSeek

Posted in

112分科測驗數學甲考科試題-12

設$a,b$為實數,並設$O$為坐標平面的原點。已知二次函數$f(x)=ax^2$的圖形與圓
$\Omega:x²+y²−3y+b=0$皆通過點$P(1,\frac{1}{2})$ ,並令點$C$為$\Omega$的圓心。根據上述,試回答下
列問題。
12. 試求向量CO與CP夾角的餘弦值。(非選擇題,2分)

答案

將\(P(1, \frac{1}{2})\)代入\(f(x) = ax^2\),得\(a = \frac{1}{2}\)。代入圓\(\Omega\):\(1^2 + (\frac{1}{2})^2 - 3 \cdot \frac{1}{2} + b = 0\),解得\(b = \frac{1}{4}\)。圓\(\Omega\)方程為\(x^2 + (y - \frac{3}{2})^2 = 2\),圓心\(C(0, \frac{3}{2})\)。向量\(\overrightarrow{CO} = (0, -\frac{3}{2})\),\(\overrightarrow{CP} = (1, -1)\)。餘弦值:\(\frac{\overrightarrow{CO} \cdot \overrightarrow{CP}}{|\overrightarrow{CO}| |\overrightarrow{CP}|} = \frac{0 \cdot 1 + (-\frac{3}{2}) \cdot (-1)}{\frac{3}{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{2}\)答案:\(\boxed{\dfrac{\sqrt{2}}{2}}\) 報錯
ChatGPT    DeepSeek

Posted in

112分科測驗數學甲考科試題-13

試證明$y=f(x)$圖形與$\Omega$在$P$點有共同的切線。(非選擇題,4分)

答案

圓下半部分\(y = \frac{3}{2} - \sqrt{2 - x^2}\),二次函數\(y = \frac{1}{2}x^2\)。利用對稱性,計算積分:\(2\int_{0}^{1} \left(\frac{3}{2} - \sqrt{2 - x^2} - \frac{1}{2}x^2\right) dx\)計算得:\( \frac{5}{3} - \frac{\pi}{2}\) 報錯
ChatGPT    DeepSeek

Posted in

112分科測驗數學甲考科試題-15

坐標平面上,設\(\Gamma\)為中心在原點且長軸落在y軸上的橢圓。已知對原點逆時針旋轉\(\theta\)角(其中\(0\lt\theta\lt\pi\))的線性變換將\(\Gamma\)變換到新橢圓\(\Gamma’:40x^2 + 4\sqrt{5}xy + 41y^2 = 180\),點\(\left(-\frac{5}{3}, \frac{2\sqrt{5}}{3}\right)\)為\(\Gamma’\)上離原點最遠的兩點之一。根據上述,試回答下列問題:橢圓\(\Gamma’\)的長軸長為 。(化為最簡根式)

答案

已知點\(\left(-\frac{5}{3}, \frac{2\sqrt{5}}{3}\right)\)到原點距離平方為\(\left(-\frac{5}{3}\right)^2 + \left(\frac{2\sqrt{5}}{3}\right)^2 = 5\),故長軸長為\(2\sqrt{5}\)。答案:\(\boxed{2\sqrt{5}}\) 報錯
ChatGPT    DeepSeek

Posted in

112分科測驗數學甲考科試題-16

試求 Γ’ 短軸所在的直線方程式與短軸長。(非選擇題,4 分)

答案

利用長軸過\(\left(-\frac{5}{3}, \frac{2\sqrt{5}}{3}\right)\)來求短軸所在直線方程:\(2x + \sqrt{5}y = 0\)。
求短軸長:
將\(y = -\frac{2}{\sqrt{5}}x\)代入橢圓方程\(40x^2 + 4\sqrt{5}xy + 41y^2 = 180\):\(40x^2 + 4\sqrt{5}x\left(-\frac{2}{\sqrt{5}}x\right) + 41\left(\frac{4}{5}x^2\right) = 180\)
化簡得:\(\frac{324x^2}{5} = 180 \implies x^2 = \frac{25}{9} \implies x = \pm\frac{5}{3}\)
對應\(y = \mp\frac{2\sqrt{5}}{3}\),兩交點為\(\left(\frac{5}{3}, -\frac{2\sqrt{5}}{3}\right)\)和\(\left(-\frac{5}{3}, \frac{2\sqrt{5}}{3}\right)\)。短軸長為兩點距離:\(\sqrt{\left(\frac{5}{3} - \left(-\frac{5}{3}\right)\right)^2 + \left(-\frac{2\sqrt{5}}{3} - \frac{2\sqrt{5}}{3}\right)^2} = \sqrt{\left(\frac{10}{3}\right)^2 + \left(-\frac{4\sqrt{5}}{3}\right)^2} = \sqrt{\frac{180}{9}} = 4\) 報錯
ChatGPT    DeepSeek

Posted in

112分科測驗數學甲考科試題-17

已知在\(\Gamma\)上的一點$P$經由此旋轉後得到的點\(P’\)落在$x$軸上,且\(P’\)點的$x$坐標大於$0$。試求$P$點的坐標。

答案

已知\(\Gamma'\)上長軸端點\(\left(-\frac{5}{3}, \frac{2\sqrt{5}}{3}\right)\)來自原橢圓\(\Gamma\)的上頂點\((0, \sqrt{5})\)(因\(\Gamma\)長軸在y軸,長軸長\(2\sqrt{5}\))。旋轉矩陣\(R = \begin{bmatrix}\frac{2}{3} & -\frac{\sqrt{5}}{3} \\ \frac{\sqrt{5}}{3} & \frac{2}{3}\end{bmatrix}\)
$令y=0代入\Gamma'得x=\frac{3}{\sqrt{2}}\\
\therefore \begin{bmatrix}\frac{3}{\sqrt{2}},0\end{bmatrix}=\begin{bmatrix}x\\y\end{bmatrix}\begin{bmatrix}\frac{2}{3} & -\frac{\sqrt{5}}{3} \\ \frac{\sqrt{5}}{3} & \frac{2}{3}\end{bmatrix}$
利用反方陣求得$原座標P(x,y):x = \dfrac{2}{3} \cdot \dfrac{3}{\sqrt{2}} = \sqrt{2}$,\(y = -\dfrac{\sqrt{5}}{3} \cdot \dfrac{3}{\sqrt{2}} = -\dfrac{\sqrt{10}}{2}\)。
答案:\(\boxed{\left(\sqrt{2}, -\dfrac{\sqrt{10}}{2}\right)}\) 報錯
ChatGPT    DeepSeek

我要來個錯題通知
Powered by