Posted in

109指考數學甲(補考)試題-01

考慮兩個函數\(f(x)= \begin{cases}1 + x, & x \leq1 \\ 1, & x>1\end{cases}\)、\(g(x)= \begin{cases}1, & x \leq1 \\ 3 – x, & x>1\end{cases}\)。關於函數的極限,試選出正確的選項。
(1)\(\lim\limits_{x \to 1} f(x)\)存在、\(\lim\limits_{x \to 1} g(x)\)存在、\(\lim\limits_{x \to 1}(f(x)+g(x))\)存在
(2)\(\lim\limits_{x \to 1} f(x)\)存在、\(\lim\limits_{x \to 1} g(x)\)不存在、\(\lim\limits_{x \to 1}(f(x)+g(x))\)不存在
(3)\(\lim\limits_{x \to 1} f(x)\)不存在、\(\lim\limits_{x \to 1} g(x)\)存在、\(\lim\limits_{x \to 1}(f(x)+g(x))\)不存在
(4)\(\lim\limits_{x \to 1} f(x)\)不存在、\(\lim\limits_{x \to 1} g(x)\)不存在、\(\lim\limits_{x \to 1}(f(x)+g(x))\)存在
(5)\(\lim\limits_{x \to 1} f(x)\)不存在、\(\lim\limits_{x \to 1} g(x)\)不存在、\(\lim\limits_{x \to 1}(f(x)+g(x))\)不存在

[單選題]
答案

首先求\(\lim\limits_{x \to 1} f(x)\):
\(\lim\limits_{x \to 1^{-}} f(x)=\lim\limits_{x \to 1^{-}}(1 + x)=1 + 1 = 2\),\(\lim\limits_{x \to 1^{+}} f(x)=1\),左右極限不相等,所以\(\lim\limits_{x \to 1} f(x)\)不存在。
再求\(\lim\limits_{x \to 1} g(x)\):\(\lim\limits_{x \to 1^{-}} g(x)=1\),\(\lim\limits_{x \to 1^{+}} g(x)=\lim\limits_{x \to 1^{+}}(3 - x)=3 - 1 = 2\),左右極限不相等,所以\(\lim\limits_{x \to 1} g(x)\)不存在。
然後求\(\lim\limits_{x \to 1}(f(x)+g(x))\):\(\lim\limits_{x \to 1^{-}}(f(x)+g(x))=\lim\limits_{x \to 1^{-}}(1 + x + 1)=\lim\limits_{x \to 1^{-}}(x + 2)=3\),\(\lim\limits_{x \to 1^{+}}(f(x)+g(x))=\lim\limits_{x \to 1^{+}}(1 + 3 - x)=\lim\limits_{x \to 1^{+}}(4 - x)=3\),左右極限相等,所以\(\lim\limits_{x \to 1}(f(x)+g(x)) = 3\)存在。
答案為(4)。


Posted in

109指考數學甲(補考)試題-02

某質點在數線上移動,已知其位置坐標為\(s(t)=\int_{0}^{t}(-x^{2}+6x)dx\),其中\(t\)表時間且\(0 \leq t \leq10\)。若此質點的速度在時段\(0 \leq t < a\)遞增,且在時段\(a < t \leq10\)遞減,試選出正確的\(a\)值。 (1)3 (2)4 (3)5 (4)6 (5)7

[單選題]
答案

首先,根據微積分基本定理,速度\(v(t)=s'(t)=-t^{2}+6t\)。
對\(v(t)\)求導得\(v'(t)=-2t + 6\)。
令\(v'(t)=0\),即\(-2t + 6 = 0\),解得\(t = 3\)。
當\(v'(t)>0\)時,\(-2t + 6>0\),解得\(t < 3\),此時速度\(v(t)\)遞增; 當\(v'(t)<0\)時,\(-2t + 6<0\),解得\(t>3\),此時速度\(v(t)\)遞減。
所以\(a = 3\),答案為(1)。


Posted in

109指考數學甲(補考)試題-04

設二階方陣\(M\)為在坐標平面上定義的線性變換,\(O\)為原點。已知\(M\)可將不共線的三點\(O\)、\(A\)、\(B\)映射至不共線的三點\(O\)、\(A’\)、\(B’\),試選出正確的選項。
(1)\(M\)為可逆矩陣
(2)若\(M\)將點\(C\)映射至點\(C’\)且\(\overrightarrow{OC}=2\overrightarrow{OA}+3\overrightarrow{OB}\),則\(\overrightarrow{OC}’=2\overrightarrow{OA}’+3\overrightarrow{OB}’\)
(3)\(\angle AOB=\angle A’OB’\)
(4)\(\overline{OA}:\overline{OB}=\overline{OA’}:\overline{OB’}\)
(5)\(\triangle OA’B’\)的面積\(=\triangle OAB\)的面積\(\times|det(M)|\)

[多選題]
Posted in

109指考數學甲(補考)試題-05

下列選項中,試選出與\(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}\)相乘之後會得到實數的選項。(註:\(i=\sqrt{-1}\))
(1)\(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}\)
(2)\(\cos\frac{\pi}{7}-i\sin\frac{\pi}{7}\)
(3)\(-\sin\frac{5\pi}{14}+i\cos\frac{5\pi}{14}\)
(4)\(\sin\frac{\pi}{7}+i\cos\frac{\pi}{7}\)
(5)\(\sin\frac{\pi}{7}-i\cos\frac{\pi}{7}\)

[多選題]
Posted in

109指考數學甲(補考)試題-06

持續投擲一枚公正骰子,在過程中若出現連續兩次點數的和為7時,就停止投擲。例如:若前兩次投擲分別出現點數1、4,點數和不等於7,所以繼續投擲;若第三次投出點數3,因為第二次與第三次點數和為7,所以此時即停止投擲。關於此機率事件,試選出正確的選項。
(1)在第一次投擲的點數為6的情況下,總共投擲兩次就停的機率為\(\frac{1}{6}\)
(2)總共投擲兩次就停止的機率為\(\frac{1}{6}\)
(3)在第一次投擲的點數為5的情況下,總共投擲三次恰好停止的機率為\(\frac{1}{6}\)
(4)總共投擲三次恰好停止的機率大於\(\frac{1}{6}\)
(5)至少投擲三次才停止的機率為\(\frac{1}{2}\)

[多選題]
答案

(1)在第一次投擲點數為6的情況下,第二次投擲點數為1才能使兩次點數和為7停止投擲,而投擲一次骰子出現點數1的概率為\(\frac{1}{6}\),所以在第一次投擲的點數為6的情況下,總共投擲兩次就停的機率為\(\frac{1}{6}\),(1)正確。
(2)總共投擲兩次就停止,即第一次投擲任意點數,第二次投擲的點數與第一次之和為7。第一次投擲有6種可能,無論第一次投出什麼,第二次投出特定點數使和為7的概率都是\(\frac{1}{6}\),所以總共投擲兩次就停止的概率為\(\frac{1}{6}\),(2)正確。
(3)在第一次投擲點數為5的情況下,第二次投擲不能為2(否則兩次就停止),概率為\(\frac{5}{6}\),第三次投擲必須為2,概率為\(\frac{1}{6}\),所以總共投擲三次恰好停止的概率為\(\frac{5}{6}\times\frac{1}{6}=\frac{5}{36}<\frac{1}{6}\),(3)錯誤。 (4)由(3)可知總共投擲三次恰好停止的概率為\(\frac{5}{36}<\frac{1}{6}\),(4)錯誤。 (5)至少投擲三次才停止的概率 = 1 - (投擲一次停止的概率 + 投擲兩次停止的概率),投擲一次不可能停止,投擲兩次停止的概率為\(\frac{1}{6}\),所以至少投擲三次才停止的概率為\(1-\frac{1}{6}=\frac{5}{6}\neq\frac{1}{2}\),(5)錯誤。答案為(1)(2)。


Posted in

109指考數學甲(補考)試題-07

關於非常數的實係數多項式函數\(f(x)\),試選出正確的選項。
(1)若\(f(1)f(2)<0\),則存在\(c \in(1,2)\)满足\(f(c)=0\)
(2)若\(f(1)f(2)>0\),則對任意的\(c \in(1,2)\),\(f(c) ≠0\)均成立
(3)若\(f(1)f(2)f(3)<0\),則存在\(c \in(1,3)\)满足\(f(c)=0\)
(4)若\((\int_{0}^{1} f(x)dx)(\int_{0}^{2} f(x)dx)<0\),則存在\(c \in(1,2)\)满足\(\int_{0}^{c} f(x)dx=0\)
(5)若\(\int_{1}^{2} f(x)dx=0\),則\(f(1)f(2)<0\)

[多選題]
Posted in

109指考數學甲(補考)試題-08

設\(a,b,c\)為三實數,且\(a>b>c\)。已知\(2^{a},2^{b},2^{c}\)三數依序成等差數列。試選出正確的選項。
(1) \(a,b,c\)三數依序成等比數列
(2) \(2a + 100,2b + 100,2c + 100\)三數依序成等差數列
(3) \(4^{a},4^{b},4^{c}\)三數依序成等差數列
(4) \(a\lt b + 1\)
(5) \(b \geq \frac{a + c}{2}\)

[多選題]
Posted in

109指考數學甲(補考)試題–A

不透明箱內有4顆紅球,8顆藍球與13顆白球。隨機同時抽取2球(每顆球被抽到的機率相等),若抽出的兩球同色,可得獎金450元;若抽出的兩球異色,可得獎金75元。則隨機同時抽取2球的獎金期望值為○ 9 ○ 10 ○ 11 元。

[選填題]
答案

首先計算抽出兩球同色的概率:
抽出兩個紅球的概率\(P_1=\frac{C_{4}^{2}}{C_{4 + 8 + 13}^{2}}=\frac{\frac{4!}{2!(4 - 2)!}}{\frac{25!}{2!(25 - 2)!}}=\frac{4\times3}{25\times24}=\frac{1}{50}\);
抽出兩個藍球的概率\(P_2=\frac{C_{8}^{2}}{C_{25}^{2}}=\frac{\frac{8!}{2!(8 - 2)!}}{\frac{25!}{2!(25 - 2)!}}=\frac{8\times7}{25\times24}=\frac{7}{75}\);
抽出兩個白球的概率\(P_3=\frac{C_{13}^{2}}{C_{25}^{2}}=\frac{\frac{13!}{2!(13 - 2)!}}{\frac{25!}{2!(25 - 2)!}}=\frac{13\times12}{25\times24}=\frac{13}{50}\)。
所以抽出兩球同色的概率\(P_{同}=P_1 + P_2+P_3=\frac{1}{50}+\frac{7}{75}+\frac{13}{50}=\frac{3 + 14 + 39}{150}=\frac{56}{150}=\frac{28}{75}\)。
抽出兩球異色的概率\(P_{異}=1 - P_{同}=1-\frac{28}{75}=\frac{47}{75}\)。
獎金期望值\(E = 450\times\frac{28}{75}+75\times\frac{47}{75}=168 + 47 = 215\)(原題答案格式中,將215分別對應填入 ○ 9 ○ 10 ○ 11 中,即2填在9處,1填在10處,5填在11處)。