Posted in

113分科測驗數學甲試題06

坐 標 空 間 中,考 慮 滿足 內積 \(\vec{u} \cdot \vec{v} = \sqrt{15}\) 與外積 \(\vec{u} \times \vec{v} = (−1,0,3)\) 的 兩 向 量 \(\vec{u} \)、\(\vec{v} \) 。試 選出正確的選項。
(1) \(\vec{u} \) 與 \(\vec{v} \) 的夾角 \( \theta \)(其中 \( 0\leq\theta\leq\pi \),\( \pi \) 為圓周率) 大於 \( \frac{\pi}{4}\)
(2) \(\vec{u} \) 可能為 \((1,0,−1)\)
(3) \(\vert\vec{u}|+|\vec{v}\vert\ge 2\sqrt{5}\)
(4) 若 已知 \(\vec{v} \),則 \(\vec{u} \) 可以 被 唯 一 決定
(5) 若 已知 \(\vert\vec{u}\vert+\vert\vec{v}\vert\),則 \(\vert\vec{v}\vert\) 可以 被 唯 一 決定​​​​

[多選]
答案

(1) \(\vert\vec{u}\times\vec{v}\vert=\vert\vec{u}\vert\vert\vec{v}\vert\sin\theta=\sqrt{10}\cdots(a)\),\(\vec{u} \cdot \vec{v} =\vert\vec{u}\vert\vert\vec{v}\vert\cos\theta=\sqrt{15}\cdots(b)\),$\frac{(a)}{(b)}$可得 \(\tan\theta = \frac{\sqrt{2}}{\sqrt{3}}\le1\),所以 \( \theta\lt\frac{\pi}{4}\),(1) 錯;
(2) $\because (1,0,-1)\cdot(-1,0,3)=-4\ne0,不滿足外積為公垂向量,內稽等於0之要求$,(2) 錯;
(3) $by(1)~~(a)^2+(b)^2=|\vec{u}|^2|\vec{v}|^2=25\therefore |\vec{u}||\vec{v}|=5$
$算幾不等式~~\frac{|\vec{u}|^2+|\vec{v}|^2}{2}\ge\sqrt{|\vec{u}|^2|\vec{v}|^2}=5\\ |\vec{u}|^2+|\vec{v}|^2\ge2|\vec{u}||\vec{v}|=10 \\(|\vec{u}|+|\vec{v}|)^2=|\vec{u}|^2+|\vec{v}|^2+2|\vec{u}||\vec{v}|\ge2|\vec{u}||\vec{v}|+2|\vec{u}||\vec{v}|\ge10+2\times5=20\\|\vec{u}|+|\vec{v}|\ge\sqrt{20}=2\sqrt{5}$
(4)$若\vec{u}確定則|\vec{u}|,|\vec{v}|都確定\\又\vec{v}//\vec{u}\times(-1,0,3)\therefore \vec{v}有兩個方向\\若加上第(1)選項可知夾角\\就能確定方向只有一種可能~~所以\vec{v}的大小與方向都能確定,只有一種可能$ ,(4) 對;
(5) 由$令\overset{確定}{\square^2}=(|\vec{u}|+|\vec{v}|)^2=|\vec{u}|^2+|\vec{v}|^2+2\overset{可確定}{|\vec{u}||\vec{v}|}\\知|\vec{u}|^2+|\vec{v}|^2可確定,\\只知道夾角但是|\vec{v}|無法確定$
,(5) 錯。
答案是(3)(4)。


Posted in

113分科測驗數學甲試題05

設 \( f (x) \) 為 三次 實 係 數 多 項 式。已知 \( f (−2 − 3i) = 0\)(其中 \( i=\sqrt{-1} \)),且 \( f (x) \) 除以 \( x^{2}+x – 2\) 的餘式為 18 。試選出正確 的 選項。
(1) \( f (2 + 3i) = 0\)
(2) \( f (−2) = 18\)
(3) \( f (x) \) 的三次項係數為負
(4) \( f (x) = 0\) 恰有 一 正實根
(5) \( y = f (x) \) 圖形的對稱中心在第 一 象 限

[多選]
答案

(1) 實系數多項式的虛根成對出現,所以 \(f (-2 + 3i) = 0\),(1) 錯
(2) \(x^{2}+x - 2=(x + 2)(x - 1)\),令 \(f(x)=(x^{2}+x - 2)q(x)+18\),則 \(f(-2)=18\),(2) 對;
(3) $令f(x)=[x-(-2-3i)][x-(-2+3i)](ax+b)=(x^2+4x+13)(px+q)\\
\because f(-2)=18=f(1)~~x=-2,1代入上式\\
解得p=-\frac{1}{3},q=\frac{4}{3}$,(3) 對;
(4) $by(3),可令px+q=0,解得第三根x=4$,(4) 對;
(5) 代對稱中心公式 \((-\frac{b}{3a},f(-\frac{b}{3a}))\),即可判定,(5) 錯。
答案是(2)(3)(4)。


Posted in

113分科測驗數學甲試題04

一遊戲廠商將舉辦抽獎活動,廠商公告每次抽獎需使用掉一個代幣,且每次抽獎的中獎機率皆為\(\frac{1}{10}\)。某甲決定先存若干個代幣,並在活動開始後進行抽獎,直到用完所有代幣才停止。試選出正確的選項。
(1)某甲中獎一次所需要抽獎次數的期望值為10
(2)某甲抽獎兩次就中獎一次以上的機率為0.2
(3)某甲抽獎10次都沒中獎的機率小於抽獎1次就中獎的機率
(4)某甲至少要存22個代幣,才能保證中獎的機率大於0.9
(5)某甲只要存足夠多的代幣,就可以保證中獎的機率為1

[多選]
答案

(1) 中獎一次所需抽獎次數服從幾何分布,期望值為 \( \frac{1}{\frac{1}{10}} = 10\),(1) 對;
(2) 抽獎兩次中獎一次以上的概率為 \(1 - C_{2}^{0}(\frac{1}{10})^{0}(1 - \frac{1}{10})^{2}=1 - 0.81 = 0.19\neq0.2\),(2) 錯;(3) 抽獎 10 次都沒中獎概率為 \((1 - \frac{1}{10})^{10}\approx0.349\),抽獎 1 次中獎概率為 \(\frac{1}{10}=0.1\),(3) 錯;(4) 設存 \(n\) 個代幣,中獎概率 \(P = 1-(1 - \frac{1}{10})^{n}>0.9\),即 \((1 - \frac{1}{10})^{n}<0.1\),解得 \(n\geq22\),(4) 對;(5) 當 \(n\to+\infty\) 時,中獎概率趨近於 1,有限個代幣時辦不到(5) 不對。 答案是(1)(4)。


Posted in

113分科測驗數學甲試題03

想 在 \( 5×5 \) 的棋盤上擺放 4 個 相 同 的 西 洋 棋 的 城 堡 棋 子。 由 於 城 堡 會 將 同 一 行 或 是同 一 列的棋子吃掉,故擺 放時規定每 一 行 與 每 一 列 最 多只能擺放 一 個城堡。在第 一 列 的 第 一、 三、 五 格 (如 圖示 畫叉 的格子) 不 擺 放 的 情況 下,試 問 共 有 多少 種 擺 放 方 式?
(1) 216
(2) 240
(3) 288
(4) 312
(5) 360

[單選]
答案

(1)不選第一列:先從第 2~5 列中選 4 列,有 \(C_{4}^{4}\overset{選列}{\times5\times4\times3\times2}=120\)
(2)選到第一列:所以共有 \(\overset{選行}{C^2_1}×\overset{選列}{C^{5-1}_3×4×3×2} = 192\)
共$120+192=312$種擺放方式,答案是(4)。


Posted in

113分科測驗數學甲試題01

如右圖所示,有 一 \( \triangle ABC \),已知 \( BC \) 邊上的高 \( AD = 12 \),且 \( \tan\angle BAD=\frac{3}{2} \),\( \tan\angle CAD=\frac{2}{3} \),試問 \( BC \) 的長度為何?
(1) 20
(2) 21
(3) 24
(4) 25
(5) 26

 

[單選]
答案

在 \(\triangle ABD\) 中,\(\tan\angle B =\frac{3}{2}\),\(AD = 12\),可得 \(BD = 8\);在 \(\triangle ACD\) 中,\(\tan\angle C =\frac{2}{3}\),可得 \(CD = 18\),所以 \(BC = BD + CD = 8 + 18 = 26\),正確選項(5)。


Posted in

113分科測驗數學甲試題16

坐 標 平 面 上,設 \( \Gamma \) 為 三 次 函 數 \( f(x)=x^{3}-9x^{2}+15x – 4\) 的 函 數 圖 形。試 說明 \( P(1,3)\) 為 \( \Gamma \) 上 之 一 點,並 求 \( \Gamma \) 在 \( P\) 點的 切線 \( L\) 的 方程式。

[非選擇]
答案

切線方程求解驗證\(P(1,3)\)在\(\Gamma\)上:
代入\(x = 1\),\(f(1) = 1^3 - 9 \cdot 1^2 + 15 \cdot 1 - 4 = 3\),故\(P(1,3)\)在\(\Gamma\)上。求切線方程:\(f'(x) = 3x^2 - 18x + 15\),\(f'(1) = 3 - 18 + 15 = 0\)。
由點斜式,切線L的方程為\(y - 3 = 0 \cdot (x - 1)\),即\(y = 3\)。


Posted in

113分科測驗數學甲試題17

17 承16,試求$\Gamma$和$L$所圍成有界區域的面積。(非選擇題,6分)

[非選擇]
答案

解聯立方程 \(\begin{cases} y=3 \\ y=x^3-9x^2+15x-4 \end{cases}\) 得 \(x^3-9x^2+15x-7=0 \implies (x-1)^2(x-7)=0\),交點 \((1,3)\)、\((7,3)\)。
所求面積:
\[
\begin{align*}
\int_{1}^{7} (3 - x^3+9x^2-15x+4)dx &= \int_{1}^{7} (-x^3+9x^2-15x+7)dx \\
&= \left.(-\frac{1}{4}x^4+3x^3-\frac{15}{2}x^2+7x)\right|_{1}^{7} = 108
\end{align*}\]