Posted in

108指考數學甲試題-非選擇二(1)

設\(f(x)\)為實係數多項式函數,且\(xf(x)=3x^{4}-2x^{3}+x^{2}+\int_{1}^{x}f(t)dt\)(\(x\geq1\))。試求\(f(1)\) 。(2分)

[非選擇題]
答案

令\(x = 1\),代入\(xf(x)=3x^{4}-2x^{3}+x^{2}+\int_{1}^{x}f(t)dt\)可得:
\(1\times f(1)=3\times1^{4}-2\times1^{3}+1^{2}+\int_{1}^{1}f(t)dt\)。
因為\(\int_{1}^{1}f(t)dt = 0\),所以\(f(1)=3 - 2 + 1=2\)。


Posted in

108指考數學甲試題-非選擇二(2)

設\(f(x)\)為實係數多項式函數,且\(xf(x)=3x^{4}-2x^{3}+x^{2}+\int_{1}^{x}f(t)dt\)(\(x\geq1\))。試求\(f'(x)\) 。(4分)

[非選擇題]
答案

對\(xf(x)=3x^{4}-2x^{3}+x^{2}+\int_{1}^{x}f(t)dt\)兩邊求導。
根據乘積求導法則\((uv)^\prime = u^\prime v + uv^\prime\),左邊求導得\(f(x)+xf'(x)\)。
右邊求導,\((3x^{4}-2x^{3}+x^{2})^\prime=12x^{3}-6x^{2}+2x\) ,\((\int_{1}^{x}f(t)dt)^\prime=f(x)\)。
所以\(f(x)+xf'(x)=12x^{3}-6x^{2}+2x + f(x)\)。
移項可得\(xf'(x)=12x^{3}-6x^{2}+2x\),兩邊同時除以\(x\)(\(x\geq1\)),得到\(f'(x)=12x^{2}-6x + 2\)。


Posted in

108指考數學甲試題-非選擇二(3)

設\(f(x)\)為實係數多項式函數,且\(xf(x)=3x^{4}-2x^{3}+x^{2}+\int_{1}^{x}f(t)dt\)(\(x\geq1\))。試求\(f(x)\) 。(2分)

[非選擇題]
答案

由(2)知\(f'(x)=12x^{2}-6x + 2\),對\(f'(x)\)積分求\(f(x)\)。
\(f(x)=\int(12x^{2}-6x + 2)dx = 4x^{3}-3x^{2}+2x + C\)。
由(1)知\(f(1)=2\),把\(x = 1\)代入\(f(x)=4x^{3}-3x^{2}+2x + C\)得\(4 - 3 + 2 + C = 2\),解得\(C=-1\)。
所以\(f(x)=4x^{3}-3x^{2}+2x - 1\)。


Posted in

111分科數學甲試題-04

設多項式\(f(x)=x^{3}+2x^{2}-2x + k\) ,\(g(x)=x^{2}+ax + 1\) ,其中\(k\),\(a\)為實數。已知\(g(x)\)整除\(f(x)\) ,且方程式\(g(x)=0\)有虛根。試選出為方程式\(f(x)=0\)的根之選項。
(1)\(-3\)
(2)\(0\)
(3)\(1\)
(4)\(\frac{1+\sqrt{-3}}{2}\)
(5)\(\frac{3+\sqrt{-5}}{2}\)

[多選]
答案

因為\(g(x)\)整除\(f(x)\),設\(f(x)=(x + m)(x^{2}+ax + 1)=x^{3}+(a + m)x^{2}+(am + 1)x + m\) 。
對比\(f(x)=x^{3}+2x^{2}-2x + k\)的係數可得:\(a + m = 2\),\(am + 1=-2\) ,解聯立方程得\(m = 3\),\(a=-1\) 。
所以\(f(x)=(x + 3)(x^{2}-x + 1)\) ,對於一元二次方程\(x^{2}-x + 1 = 0\),由求根公式\(x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}\)(此處\(a = 1\),\(b=-1\),\(c = 1\))可得根為\(x=\frac{1\pm\sqrt{1 - 4}}{2}=\frac{1\pm\sqrt{-3}}{2}\) ,所以\(f(x)=0\)的根為\(-3\),\(\frac{1+\sqrt{-3}}{2}\) ,答案為(1)(4)。