Posted in

106指考數學甲試題–D

坐標空間中,平面\(ax + by + cz = 0\)與平面\(x = 0\)、\(x+\sqrt{3}y = 0\)的夾角(介於\(0^{\circ}\)到\(90^{\circ}\)之間)都是\(60^{\circ}\),且\(a^2 + b^2 + c^2 = 12\),則\((a^2,b^2,c^2)=\)____。

[選填題]
答案

設平面 \( E_1: ax+by+cz=0 \)(法向量 \( \vec{n}_1=(a,b,c) \),且 \( a^2+b^2+c^2=12 \)),平面 \( E_2:x=0 \)(法向量 \( \vec{n}_2=(1,0,0) \)),平面 \( E_3:x+\sqrt{3}y=0 \)(法向量 \( \vec{n}_3=(1,\sqrt{3},0) \))。

#### 由 \( E_1, E_2 \) 的夾角(\( 60^\circ \)):
\[
\cos60^\circ = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|} \implies \frac{1}{2} = \frac{|a|}{\sqrt{12} \times 1}
\]
得 \( |a| = \sqrt{3} \implies a^2=3 \)。

#### 由 \( E_1, E_3 \) 的夾角(\( 60^\circ \)):
\[
\cos60^\circ = \frac{|\vec{n}_1 \cdot \vec{n}_3|}{|\vec{n}_1||\vec{n}_3|} \implies \frac{1}{2} = \frac{|a+\sqrt{3}b|}{\sqrt{12} \times 2}
\]
得 \( |a+\sqrt{3}b|=2\sqrt{3} \),代入 \( a=\pm\sqrt{3} \),解得 \( b^2=1 \) 或 \( b^2=9 \)。

#### 結合 \( a^2+b^2+c^2=12 \):
- 當 \( a^2=3, b^2=1 \) 時,\( c^2=12-3-1=8 \);
- 當 \( a^2=3, b^2=9 \) 時,\( c^2=12-3-9=0 \)。

故 \( (a^2, b^2, c^2) = \boxed{(3,1,8)} \) 或 \( \boxed{(3,9,0)} \)。


Posted in

109指考數學甲(補考)試題-非選擇一(3)

坐標空間中,設\(E\)為過原點且由向量\(\vec{u}=(2,0,1)\)、\(\vec{v}=(0,1,1)\)所張出的平面。將空間中兩點\(A\)、\(B\)垂直投影到平面\(E\)上,所得投影點依序為\(A’\)、\(B’\)兩點。已知\(\overrightarrow{AB}\cdot\vec{u}=5\),\(\overrightarrow{AB}\cdot\vec{v}=2\),若\(\overrightarrow{A’B’}=\alpha\vec{u}+\beta\vec{v}\),試求實數\(\alpha\),\(\beta\)之值。(6分)

[非選擇題]
答案

已知\(\overrightarrow{A'B'}=\alpha\vec{u}+\beta\vec{v}\),\(\vec{u}=(2,0,1)\),\(\vec{v}=(0,1,1)\),所以\(\overrightarrow{A'B'}=(2\alpha,\beta,\alpha+\beta)\)。
由(2)知\(\overrightarrow{A'B'}\cdot\vec{u}=\overrightarrow{AB}\cdot\vec{u}=5\),即\((2\alpha,\beta,\alpha+\beta)\cdot(2,0,1)=5\),可得\(4\alpha+\alpha+\beta = 5\),即\(5\alpha+\beta = 5\) ①;
又\(\overrightarrow{A'B'}\cdot\vec{v}=\overrightarrow{AB}\cdot\vec{v}=2\),即\((2\alpha,\beta,\alpha+\beta)\cdot(0,1,1)=2\),可得\(\beta+\alpha+\beta = 2\),即\(\alpha + 2\beta = 2\) ②。
由①\(\times2 -\)②得:\(10\alpha + 2\beta - (\alpha + 2\beta)=10 - 2\),\(9\alpha = 8\),解得\(\alpha=\frac{8}{9}\)。
把\(\alpha=\frac{8}{9}\)代入①得:\(5\times\frac{8}{9}+\beta = 5\),\(\beta = 5 - \frac{40}{9}=-\frac{5}{9}\)。
所以\(\alpha=\frac{8}{9}\),\(\beta =-\frac{5}{9}\)。


Posted in

109指考數學甲(補考)試題-非選擇二(1)

設\(f(x)=x^{3}+bx^{2}+cx + d\)為三次實係數多項式函數。已知\(f'(x)\)是\(f(x)\)的因式,若\(f(x)=\frac{1}{3}f'(x)(x + k)\),其中\(k\)為實數,試求出\(b\)(以\(k\)的數學式表示)。(4分)

[非選擇題]
答案

首先對\(f(x)=x^{3}+bx^{2}+cx + d\)求導,可得\(f'(x)=3x^{2}+2bx + c\)。
將\(f(x)=\frac{1}{3}f'(x)(x + k)\)展開:
\(x^{3}+bx^{2}+cx + d=\frac{1}{3}(3x^{2}+2bx + c)(x + k)\)
\(=\frac{1}{3}(3x^{3}+3kx^{2}+2bx^{2}+2bkx + cx + ck)\)
\(=x^{3}+(k+\frac{2b}{3})x^{2}+(\frac{2bk + c}{3})x+\frac{ck}{3}\)。
對比等式兩邊\(x^{2}\)的係數,可得\(b = k+\frac{2b}{3}\),
移項可得\(b-\frac{2b}{3}=k\),即\(\frac{b}{3}=k\),所以\(b = 3k\)。


Posted in

109指考數學甲(補考)試題-非選擇二(2)

設\(f(x)=x^{3}+bx^{2}+cx + d\)為三次實係數多項式函數。已知\(f'(x)\)是\(f(x)\)的因式,試證明\(f'(x)=0\)有重根。(4分)

[非選擇題]
答案

由(1)知\(b = 3k\),\(f'(x)=3x^{2}+2bx + c\),\(f(x)=\frac{1}{3}f'(x)(x + k)\)。
因為\(f'(x)\)是\(f(x)\)的因式,所以\(f(x)\)能被\(f'(x)\)整除,即\(f(x)=0\)的根也是\(f'(x)=0\)的根。
\(f(x)=x^{3}+bx^{2}+cx + d\),\(f'(x)=3x^{2}+2bx + c\)。
假設\(f'(x)=0\)的兩個根為\(x_1\),\(x_2\),由韋達定理\(x_1 + x_2=-\frac{2b}{3}\),\(x_1x_2=\frac{c}{3}\)。
又因為\(f(x)=\frac{1}{3}f'(x)(x + k)\),所以\(f(x)\)有一個根為\(-k\),不妨設\(x_1=-k\)。
將\(x_1=-k\)代入\(x_1 + x_2=-\frac{2b}{3}\),由\(b = 3k\)可得\(-k + x_2=-2k\),則\(x_2=-k\)。
所以\(f'(x)=0\)的兩個根相等,即\(f'(x)=0\)有重根。


Posted in

110指考數學甲試題-05

假設\(f(x)\)為五次實係數多項式,且\(f(x)\)除以\(x^{n}-1\)的餘式為\(r_{n}(x)\) ,\(n\)是正整數。試選出正確的選項。
(1)\(r_{1}(x)=f(1)\)
(2)\(r_{2}(x)\)是一次實數多項式
(3)\(r_{4}(x)\)除以\(x^{2}-1\)所得的餘式等於\(r_{2}(x)\)
(4)\(r_{5}(x)=r_{6}(x)\)
(5)若\(f(-x)=-f(x)\) ,則\(r_{3}(-x)=-r_{3}(x)\)

[多選]
答案

(1)由餘式定理,\(f(x)=(x - 1)q(x)+r_{1}(x)\) ,令\(x = 1\) ,得\(r_{1}(x)=f(1)\) ,(1)正確。
(2) \(f(x)=(x^{2}-1)q(x)+r_{2}(x)\) ,\(r_{2}(x)\)次數小於\(2\) ,可能是常數多項式,(2)錯誤。
(3) 因為\(x^{4}-1=(x^{2}-1)(x^{2}+1)\) ,所以\(r_{4}(x)\)除以\(x^{2}-1\)的餘式和\(f(x)\)除以\(x^{2}-1\)的餘式相同,即\(r_{4}(x)\)除以\(x^{2}-1\)所得的餘式等於\(r_{2}(x)\) ,(3)正確。
(4) \(x^{5}-1\)與\(x^{6}-1\)不同,\(r_{5}(x)\)和\(r_{6}(x)\)一般不相等,(4)錯誤。
(5) \(f(x)=(x^{3}-1)q(x)+r_{3}(x)\) ,\(f(-x)=(-x^{3}-1)q(-x)+r_{3}(-x)\) ,因\(f(-x)=-f(x)\) ,可得\(r_{3}(-x)=-r_{3}(x)\) ,若(5)正確
$(x^{3}-1)q(x)=(-x^{3}-1)q(-x)~~不可能$
。答案為(1)(3)。


Posted in

110指考數學甲試題-非選擇2

(1)坐標平面上,以\(\Gamma\)表示多項式函數\(y=x^{3}-4x^{2}+5x\)的圖形,且以\(L\)表示直線\(y = mx\),其中\(m\)為實數。當\(m = 2\)時,試求出在\(x\geq0\)的範圍內,\(\Gamma\)與\(L\)的三個相異交點的\(x\)坐標。(2分)
(2)坐標平面上,以\(\Gamma\)表示多項式函數\(y=x^{3}-4x^{2}+5x\)的圖形,且以\(L\)表示直線\(y = mx\),其中\(m\)為實數。承(1),試求\(\Gamma\)與\(L\)所圍有界區域面積的值。(4分)
(3)坐標平面上,以\(\Gamma\)表示多項式函數\(y=x^{3}-4x^{2}+5x\)的圖形,且以\(L\)表示直線\(y = mx\),其中\(m\)為實數。在\(x\geq0\)的範圍內,若\(\Gamma\)與\(L\)有三個相異交點,則滿足此條件的\(m\)之最大範圍為\(a\lt m\lt b\),試求\(a, b\)之值。(6分)

[非選擇]
答案

(1)
令\(x^{3}-4x^{2}+5x = 2x\)(\(x\geq0\)),移項可得\(x^{3}-4x^{2}+3x = 0\) 。
提取公因式\(x\)得\(x(x^{2}-4x + 3)=0\) 。
進一步分解\(x(x - 1)(x - 3)=0\) 。
所以\(x = 0\)或\(x = 1\)或\(x = 3\),即在\(x\geq0\)的範圍內,\(\Gamma\)與\(L\)的三個相異交點的\(x\)坐標為\(0\),\(1\),\(3\)。
(2)
由(1)知交點\(x\)坐標為\(0\),\(1\),\(3\)。
\(\Gamma\)與\(L\)所圍有界區域面積\(S=\int_{0}^{1}[(x^{3}-4x^{2}+5x)-2x]dx+\int_{1}^{3}[2x-(x^{3}-4x^{2}+5x)]dx\) 。
先計算\(\int_{0}^{1}(x^{3}-4x^{2}+3x)dx=\left[\frac{1}{4}x^{4}-\frac{4}{3}x^{3}+\frac{3}{2}x^{2}\right]_{0}^{1}=\frac{1}{4}-\frac{4}{3}+\frac{3}{2}=\frac{3 - 16 + 18}{12}=\frac{5}{12}\) 。
再計算\(\int_{1}^{3}(-x^{3}+4x^{2}-3x)dx=\left[-\frac{1}{4}x^{4}+\frac{4}{3}x^{3}-\frac{3}{2}x^{2}\right]_{1}^{3}=(-\frac{81}{4}+36-\frac{27}{2})-(-\frac{1}{4}+\frac{4}{3}-\frac{3}{2})\)
\(=(-\frac{81 + 144 - 54}{4})-(-\frac{3 + 16 - 18}{12})=\frac{9}{4}+\frac{5}{12}=\frac{27 + 5}{12}=\frac{32}{12}=\frac{8}{3}\) 。
所以\(S=\frac{5}{12}+\frac{8}{3}=\frac{5 + 32}{12}=\frac{37}{12}\) 。
(3)
令\(x^{3}-4x^{2}+5x = mx\)(\(x\geq0\)),移項得\(x^{3}-4x^{2}+(5 - m)x = 0\),\(x(x^{2}-4x+(5 - m)) = 0\) 。
已有一個根\(x = 0\),要使\(x^{2}-4x+(5 - m)=0\)有兩個不同正根。
對於一元二次方程\(ax^{2}+bx + c = 0\)(\(a = 1\),\(b=-4\),\(c = 5 - m\)),有兩個不同正根需滿足\(\Delta=b^{2}-4ac\gt0\),\(x_1 + x_2=-\frac{b}{a}\gt0\),\(x_1x_2=\frac{c}{a}\gt0\) 。
\(\Delta = 16 - 4(5 - m)\gt0\),即\(16 - 20 + 4m\gt0\),\(4m\gt4\),\(m\gt1\) 。
\(x_1 + x_2 = 4\gt0\)(恆成立)。
\(x_1x_2 = 5 - m\gt0\),\(m\lt5\) 。
所以\(1\lt m\lt5\),則\(a = 1\),\(b = 5\)。


Posted in

112分科測驗數學甲考科試題-05

考慮實係數多項式 \(f(x)=x^4-4x^3-2x^2+ax+b\)。已知方程式 \(f(x)=0\) 有虛根 \(1+2i\) (其中 \(i=\sqrt{-1}\)),試選出正確的選項。
(1) \(1-2i\) 也是 \(f(x)=0\) 的根
(2) \(a, b\) 皆為正數
(3) \(f'(2.1)<0\)
(4) 函數 \(y=f(x)\) 在 \(x=1\) 有局部極小值
(5) \(y=f(x)\) 圖形反曲點的 \(x\) 坐標皆大於0

[多選]
答案

選項(1):
實係數多項式虛根成共軛對,\(1 + 2i\)是根,則\(1 - 2i\)必為根,正確。
選項(2):
由\((x - (1 + 2i))(x - (1 - 2i)) = x^2 - 2x + 5\),對\(f(x)\)作多項式長除法得餘式0,可得\(a = -26\),\(b = -60\),非正數,錯誤。
選項(3):\(f'(x) = 4x^3 - 12x^2 - 4x - 26\),計算\(f'(2.1)\):\(4(2.1)^3 - 12(2.1)^2 - 4(2.1) - 26 < 0\),正確。 選項(4):\(f'(1) = 4 - 12 - 4 - 26 = -38 \neq 0\),\(x = 1\)非極值點,錯誤。 選項(5):\(f''(x) = 12x^2 - 24x - 4\),令\(f''(x) = 0\),解\(x = \frac{24 \pm \sqrt{768}}{24} 未必大於 0\),錯誤。


Posted in

111分科數學甲試題-02

設\(c\)為實數使得三元一次方程組$\begin{cases}x – y + z = 0\\2x + cy + 3z = 1\\3x – 3y + cz = 0\end{cases}$無解。試選出\(c\)之值。
(1)\(-3\)
(2)\(-2\)
(3)\(0\)
(4)\(2\)
(5)\(3\)

[單選]
答案

對於三元一次方程組\(\begin{cases}A_{1}x + B_{1}y + C_{1}z = D_{1}\\A_{2}x + B_{2}y + C_{2}z = D_{2}\\A_{3}x + B_{3}y + C_{3}z = D_{3}\end{cases}\),其係數行列式\(\Delta=\begin{vmatrix}A_{1}&B_{1}&C_{1}\\A_{2}&B_{2}&C_{2}\\A_{3}&B_{3}&C_{3}\end{vmatrix}\)。
此方程組中\(\Delta=\begin{vmatrix}1&-1&1\\2&c&3\\3&-3&c\end{vmatrix}=c^{2}-3c - 10\),令\(\Delta = 0\),即\((c - 5)(c + 2)=0\) ,解得\(c = 5\)或\(c=-2\) 。
當\(c=-2\)時,方程組中前兩個方程相加得\(3x + z = 1\),第三個方程為\(3x - 3y - 2z = 0\),此時方程組無解,答案為(2)。


Posted in

113分科測驗數學甲試題09

設\(a, b, c, d\)為實數。已知兩聯立方程組\(\begin{cases}ax + by = 2 \\ cx + dy = 1\end{cases}\)、\(\begin{cases}ax + by = -1 \\ cx + dy = -1\end{cases}\)的增廣矩陣經過相同的列運算後,分別得到\(\begin{bmatrix}1 & -1 & 3 \\ 0 & 1 & 2\end{bmatrix}\)、\(\begin{bmatrix}1 & -1 & 2 \\ 0 & 1 & -1\end{bmatrix}\)。求聯立方程組\(\begin{cases}ax + by = 0 \\ cx + dy = 1\end{cases}\)的解,即\(x = \_\_\_\),\(y = \_\_\_\)。

[選填]
答案

通過分析前兩個方程組的解,反推原係數:對第一個方程組,變換後解為\(x = 5\),\(y = 2\),代入\(\begin{cases}ax + by = 2 \\ cx + dy = 1\end{cases}\);對第二個方程組,變換後解為\(x = 1\),\(y = -1\),代入\(\begin{cases}ax + by = -1 \\ cx + dy = -1\end{cases}\)。解得\(a = 0\),\(b = 1\),\(c = -\frac{1}{7}\),\(d = \frac{6}{7}\)。代入所求方程組\(\begin{cases}ax + by = 0 \\ cx + dy = 1\end{cases}\),即\(\begin{cases}y = 0 \\ -\frac{1}{7}x + \frac{6}{7}y = 1\end{cases}\),解得\(x = -7\),\(y = 0\)。


Posted in

113分科測驗數學甲試題05

設 \( f (x) \) 為 三次 實 係 數 多 項 式。已知 \( f (−2 − 3i) = 0\)(其中 \( i=\sqrt{-1} \)),且 \( f (x) \) 除以 \( x^{2}+x – 2\) 的餘式為 18 。試選出正確 的 選項。
(1) \( f (2 + 3i) = 0\)
(2) \( f (−2) = 18\)
(3) \( f (x) \) 的三次項係數為負
(4) \( f (x) = 0\) 恰有 一 正實根
(5) \( y = f (x) \) 圖形的對稱中心在第 一 象 限

[多選]
答案

(1) 實系數多項式的虛根成對出現,所以 \(f (-2 + 3i) = 0\),(1) 錯
(2) \(x^{2}+x - 2=(x + 2)(x - 1)\),令 \(f(x)=(x^{2}+x - 2)q(x)+18\),則 \(f(-2)=18\),(2) 對;
(3) $令f(x)=[x-(-2-3i)][x-(-2+3i)](ax+b)=(x^2+4x+13)(px+q)\\
\because f(-2)=18=f(1)~~x=-2,1代入上式\\
解得p=-\frac{1}{3},q=\frac{4}{3}$,(3) 對;
(4) $by(3),可令px+q=0,解得第三根x=4$,(4) 對;
(5) 代對稱中心公式 \((-\frac{b}{3a},f(-\frac{b}{3a}))\),即可判定,(5) 錯。
答案是(2)(3)(4)。