Posted in

113分科測驗數學甲試題09

設\(a, b, c, d\)為實數。已知兩聯立方程組\(\begin{cases}ax + by = 2 \\ cx + dy = 1\end{cases}\)、\(\begin{cases}ax + by = -1 \\ cx + dy = -1\end{cases}\)的增廣矩陣經過相同的列運算後,分別得到\(\begin{bmatrix}1 & -1 & 3 \\ 0 & 1 & 2\end{bmatrix}\)、\(\begin{bmatrix}1 & -1 & 2 \\ 0 & 1 & -1\end{bmatrix}\)。求聯立方程組\(\begin{cases}ax + by = 0 \\ cx + dy = 1\end{cases}\)的解,即\(x = \_\_\_\),\(y = \_\_\_\)。

[選填]
答案

通過分析前兩個方程組的解,反推原係數:對第一個方程組,變換後解為\(x = 5\),\(y = 2\),代入\(\begin{cases}ax + by = 2 \\ cx + dy = 1\end{cases}\);對第二個方程組,變換後解為\(x = 1\),\(y = -1\),代入\(\begin{cases}ax + by = -1 \\ cx + dy = -1\end{cases}\)。解得\(a = 0\),\(b = 1\),\(c = -\frac{1}{7}\),\(d = \frac{6}{7}\)。代入所求方程組\(\begin{cases}ax + by = 0 \\ cx + dy = 1\end{cases}\),即\(\begin{cases}y = 0 \\ -\frac{1}{7}x + \frac{6}{7}y = 1\end{cases}\),解得\(x = -7\),\(y = 0\)。


Posted in

114學測數學B試題02

設 \( A \) 為 \( 3 \times 2 \) 階矩陣,且 \( A\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -6 \\ -2 & 1 \\ 3 & 5 \end{bmatrix} \)。若 \( A\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \),試問 \( a + b + c \) 之值為何?
(1) 0
(2) 2
(3) 4
(4) 5
(5) 8

[單選]
答案

1. 設 \( A = \begin{bmatrix} m & n \\ p & q \\ r & s \end{bmatrix} \),計算 \( A\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \):
\[
\begin{bmatrix} m - n & n \\ p - q & q \\ r - s & s \end{bmatrix} = \begin{bmatrix} 4 & -6 \\ -2 & 1 \\ 3 & 5 \end{bmatrix}
\]
2. 對應元素相等,得:
- \( m - n = 4 \),\( n = -6 \implies m = 4 + (-6) = -2 \)
- \( p - q = -2 \),\( q = 1 \implies p = -2 + 1 = -1 \)
- \( r - s = 3 \),\( s = 5 \implies r = 3 + 5 = 8 \)
3. 計算 \( A\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} m \\ p \\ r \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ 8 \end{bmatrix} \),即 \( a = -2 \),\( b = -1 \),\( c = 8 \)
4. 求和:\( a + b + c = -2 + (-1) + 8 = 5 \),故答案為(4)。


https://www.ceec.edu.tw/files/file_pool/1/0p051541901400830673/04-114%e5%ad%b8%e6%b8%ac%e6%95%b8%e5%ad%b8b%e7%ad%94%e6%a1%88.pdf

Posted in

113學測數學B試題-13

矩陣方程與代數運算題”,”已知\( a,b,c,d \)為實數,且\(\begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\)。若\(\begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}\begin{bmatrix} 2a+1 \\ 2b+1 \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}\),則\( c-3d \)的值為何?

[選填]
答案

首先解第一個矩陣方程:
由\(\begin{cases} a - b = 1 \\ 3a - 2b = 0 \end{cases}\),
由第一式得\( a = b + 1 \),代入第二式:
\( 3(b + 1) - 2b = 0 \implies b + 3 = 0 \implies b = -3 \),
則\( a = -3 + 1 = -2 \)。

接著計算第二個矩陣方程:
\( 2a + 1 = 2 \times (-2) + 1 = -3 \),
\( 2b + 1 = 2 \times (-3) + 1 = -5 \),
因此\(\begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}\begin{bmatrix} -3 \\ -5 \end{bmatrix} = \begin{bmatrix} -3 - (-5) \\ 3 \times (-3) - 2 \times (-5) \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}\),
即\( c = 2 \),\( d = 1 \)。

故\( c - 3d = 2 - 3 \times 1 = -1 \)。


Posted in

112學測數學B試題-02

考慮實數二階方陣 \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\),若 \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ -9 & -7 \end{bmatrix}\),則 \(c – 2b\) 的值為何?
(1) -11
(2) -4
(3) 1
(4) 10
(5) 11

[單選]
答案

1. 逐步計算矩陣乘法:
- 先計算 \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} a \times 1 + b \times 0 & a \times 0 + b \times (-2) \\ c \times 1 + d \times 0 & c \times 0 + d \times (-2) \end{bmatrix} = \begin{bmatrix} a & -2b \\ c & -2d \end{bmatrix}\)
- 再計算 \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} a & -2b \\ c & -2d \end{bmatrix} = \begin{bmatrix} 0 \times a + 1 \times c & 0 \times (-2b) + 1 \times (-2d) \\ 1 \times a + 0 \times c & 1 \times (-2b) + 0 \times (-2d) \end{bmatrix} = \begin{bmatrix} c & -2d \\ a & -2b \end{bmatrix}\)
2. 對應等式 \(\begin{bmatrix} c & -2d \\ a & -2b \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ -9 & -7 \end{bmatrix}\),可得:
- \(c = 3\)
- \(-2b = -7 \implies b = \frac{7}{2}\)
3. 計算 \(c - 2b\):
\(c - 2b = 3 - 2 \times \frac{7}{2} = 3 - 7 = -4\),故答案為(2)。


https://www.ceec.edu.tw/files/file_pool/1/0n045357541158913049/04-112%e5%ad%b8%e6%b8%ac%e6%95%b8%e5%ad%b8b%e9%81%b8%e6%93%87%28%e5%a1%ab%29%e9%a1%8c%e7%ad%94%e6%a1%88.pdf

Posted in

111學測數學B試題-05

設矩陣 \( A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \),若 \( A^7 – 3A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \),則 \( a + b + c + d \) 之值為下列哪一個選項?
(1) -8
(2) -5
(3) 5
(4) 8
(5) 10

[單選]
答案

$\begin{align*}
&計算矩陣冪:A^2=\begin{bmatrix}1&1\\1&-1\end{bmatrix}\begin{bmatrix}1&1\\1&-1\end{bmatrix}=\begin{bmatrix}2&0\\0&2\end{bmatrix}=2I,\\
&故A^7=A^6×A=(A^2)^3×A=(2I)^3×A=8A。\\
\\
&計算A^7-3A=8A-3A=5A=\begin{bmatrix}5&5\\5&-5\end{bmatrix},\\
&其元素和:5+5+5-5=10,故選(5)。
\end{align*}$


https://www.ceec.edu.tw/files/file_pool/1/0m053363176747148935/04-111%e5%ad%b8%e6%b8%ac%e6%95%b8%e5%ad%b8b%e9%81%b8%e6%93%87%28%e5%a1%ab%29%e9%a1%8c%e7%ad%94%e6%a1%88.pdf