Posted in

114分科測驗數學甲試卷-07

已知實係數多項式 \(f(x)\) 的次數大於5,且其最高次項係數為正。又 \(f(x)\) 在 \(x=1、2、4\) 處有極小值,且在 \(x=3、5\) 處有極大值。根據上述,試選出正確的選項?
(1) \(f(1)\lt f(3)\)
(2) 存在實數 \(a,b\) 满足 \(1\lt a\lt b\lt 2\),使得 \(f'(a)\gt 0\) 且 \(f'(b)\lt 0\)
(3) \(f”(3)\gt 0\)
(4) 存在實數 \(c\gt 5\),使得 \(f'(c)\gt 0\)
(5) \(f(x)\) 的次數大於7

答案

1. (1) 極小值與極大值無必然大小關係,錯;
2. (2) \(x=1、2\) 是極小值,故 \(f'(x)\) 在 \(1\) 右側正、\(2\) 左側負,存在 \(a,b\) 使 \(f'(a)>0\) 且 \(f'(b)<0\),對;
3. (3) \(x=3\) 是極大值,故 \(f''(3)<0\),錯;
4. (4) 最高次項係數正,次數大於5(奇數),\(x\to+\infty\) 時 \(f'(x)\to+\infty\),故存在 \(c>5\) 使 \(f'(c)>0\),對;
5. (5) ✓:\( f'(x)=0 \) 至少有 7 個實根 ⇒ \( \deg f(x) \geq 8 \):(2)(4)(5) 報錯
ChatGPT    DeepSeek
試題內容
試題內容
選擇(填)題答案
非選擇題評分原則

Posted in

105指考數學甲試題-04

假設\(a\),\(b\)皆為非零實數,且坐標平面上二次函數\(y = ax^{2}+bx\)與一次函數\(y = ax + b\)的圖形相切。請選出切點所在位置為下列哪一個選項。
(1)在\(x\)軸上
(2)在\(y\)軸上
(3) 在第一象限
(4) 在第四象限
(5)當\(a\gt0\)時,在第一象限;當\(a\lt0\)時,在第四象限

答案

由\(ax^{2}+bx = ax + b\),移項得\(ax^{2}+(b - a)x - b = 0\)。
因為兩函數圖形相切,所以判別式\(\Delta=(b - a)^{2}+4ab = 0\),即\((a + b)^{2}=0\),\(a=-b\)。
將\(a=-b\)代入一次函數\(y = ax + b\)得\(y = ax - a=a(x - 1)\),代入二次函數得\(y = ax^{2}-ax\)。
聯立方程求解切點,令\(ax - a = ax^{2}-ax\),即\(ax^{2}-2ax + a = 0\),\(x^{2}-2x + 1 = 0\),解得\(x = 1\),\(y = 0\),切點為\((1,0)\),在\(x\)軸上。
答案為(1)。 報錯
ChatGPT    DeepSeek

Posted in

105指考數學甲試題-1)

設三次實係數多項式\(f(x)\)的最高次項係數為\(a\)。已知在\(0\leq x\leq3\)的範圍中,\(f(x)\)的最大值12發生在\(x = 0\),\(x = 2\)兩處。另一多項式\(G(x)\)滿足\(G(0)=0\),以及對任意實數\(s\),\(r(s\leq r)\),\(\int_{s}^{r}f(t)dt=G(r)-G(s)\)恆成立,且函數\(y = G(x)\)在\(x = 1\)處有(相對)極值。試描繪\(y = f(x)\)在\(0\leq x\leq3\)的範圍中可能的圖形,在圖上標示\((0,f(0))\)、\((2,f(2))\),並由此說明\(a\)為正或負。(4分)

答案

因為\(f(x)\)是三次實系數多項式,且在\(0\leq x\leq3\)上,\(f(0)=f(2)=12\)為最大值。
三次函數的圖像是一條曲線,若\(a\gt0\),函數圖像大致是先增後減再增;若\(a\lt0\),函數圖像大致是先減後增再減。
由於\(f(x)\)在\([0, 3]\)上\(x = 0\)和\(x = 2\)處取得最大值,所以函數圖像在\([0, 2]\)上不是單調遞增的,在\([0, 3]\)上也不是單調遞減的,所以\(a\lt0\)。
圖像大致為:在\([0, 2]\)上先上升後下降(形成一個局部極大值點在\(x = 0\)和\(x = 2\)處),在\([2, 3]\)上繼續下降 。在圖像上標注出\((0, 12)\)和\((2, 12)\)兩個點 。 報錯
ChatGPT    DeepSeek

Posted in

105指考數學甲試題-2)

設三次實係數多項式\(f(x)\)的最高次項係數為\(a\)。已知在\(0\leq x\leq3\)的範圍中,\(f(x)\)的最大值12發生在\(x = 0\),\(x = 2\)兩處。另一多項式\(G(x)\)滿足\(G(0)=0\),以及對任意實數\(s\),\(r(s\leq r)\),\(\int_{s}^{r}f(t)dt=G(r)-G(s)\)恆成立,且函數\(y = G(x)\)在\(x = 1\)處有(相相對)極值。試求方程式\(f(x)-12=0\)的實數解(如有重根須標示),並利用\(y = G(x)\)在\(x = 1\)處有極值,求\(a\)之值。(5分)

答案

因為\(f(x)\)在\(0\leq x\leq3\)上最大值\(12\)在\(x = 0\)和\(x = 2\)處取得,所以\(f(x)-12 = 0\)的實數解為\(x = 0\)(重根)和\(x = 2\)(重根),即\(f(x)-12=a(x - 0)^2(x - 2)^2=ax^2(x - 2)^2\)。
因為\(G(x)\)滿足\(\int_{s}^{r}f(t)dt=G(r)-G(s)\),所以\(G^\prime(x)=f(x)\)。
又因為\(y = G(x)\)在\(x = 1\)處有極值,所以\(G^\prime(1)=f(1)=0\)。
將\(x = 1\)代入\(f(x)=ax^2(x - 2)^2\),得\(a\times1^2\times(1 - 2)^2=0\),即\(a = - 12\)。 報錯
ChatGPT    DeepSeek

Posted in

105指考數學甲試題-3)

設三次實係數多項式\(f(x)\)的最高次項係數為\(a\)。已知在\(0\leq x\leq3\)的範圍中,\(f(x)\)的最大值12發生在\(x = 0\),\(x = 2\)兩處。另一多項式\(G(x)\)滿足\(G(0)=0\),以及對任意實數\(s\),\(r(s\leq r)\),\(\int_{s}^{r}f(t)dt=G(r)-G(s)\)恆成立,且函數\(y = G(x)\)在\(x = 1\)處有(相對)極值。在\(0\leq x\leq2\)的範圍中,求\(G(x)\)之最小值。(6分)

答案

由(2)可知\(f(x)=-12x^{2}(x - 2)^{2}=-12x^{4}+48x^{3}-48x^{2}\)。
因為\(G(x)=\int f(x)dx\),所以\(G(x)=\int(-12x^{4}+48x^{3}-48x^{2})dx=- \frac{12}{5}x^{5}+12x^{4}-16x^{3}+C\)。
又\(G(0)=0\),代入可得\(C = 0\),即\(G(x)=-\frac{12}{5}x^{5}+12x^{4}-16x^{3}\) 。
對\(G(x)\)求導得\(G^\prime(x)=-12x^{4}+48x^{3}-48x^{2}=-12x^{2}(x^{2}-4x + 4)=-12x^{2}(x - 2)^{2}\)。
在區間\([0,2]\)上分析\(G^\prime(x)\)的符號:
令\(G^\prime(x)=0\),可得\(x = 0\)或\(x = 2\)。
當\(0\lt x\lt2\)時,\(G^\prime(x)\leq0\),這表明\(G(x)\)在\((0,2)\)上單調遞減。
所以在\(0\leq x\leq2\)的範圍內,\(G(x)\)在\(x = 2\)處取得最小值。
將\(x = 2\)代入\(G(x)\)得:
\(G(2)=-\frac{12}{5}\times2^{5}+12\times2^{4}-16\times2^{3}\)
\(=-\frac{384}{5}+192 - 128\)
\(=-\frac{384}{5}+64\)
\(=-\frac{384}{5}+\frac{320}{5}\)
\(=-\frac{64}{5}\)。
故\(G(x)\)在\(0\leq x\leq2\)的範圍內的最小值為\(-\frac{64}{5}\)。 報錯
ChatGPT    DeepSeek

Posted in

106指考數學甲試題-04

已知一實係數三次多項式\(f(x)\)在\(x = 1\)有極大值\(3\),且圖形\(y = f(x)\)在\((4,f(4))\)之切線方程式為\(y – f(4)+5(x – 4)=0\),試問\(\int_{1}^{4}f^{\prime\prime}(x)dx\)之值為下列哪一選項?
(1) – 5
(2) – 3
(3)0
(4)3
(5)5

答案

根據定積分基本定理\(\int_{a}^{b}f^{\prime\prime}(x)dx=f^{\prime}(b)-f^{\prime}(a)\)。
已知\(f(x)\)在\(x = 1\)有極大值,則\(f^{\prime}(1)=0\)。
又因為圖形\(y = f(x)\)在\((4,f(4))\)之切線方程式為\(y - f(4)+5(x - 4)=0\),其斜率為\(-5\),所以\(f^{\prime}(4)= - 5\)。
則\(\int_{1}^{4}f^{\prime\prime}(x)dx=f^{\prime}(4)-f^{\prime}(1)= - 5 - 0=-5\)。
答案為(1)。 報錯
ChatGPT    DeepSeek

Posted in

106指考數學甲試題-07

設實係數三次多項式\(f(x)\)的首項係數為正。已知\(y = f(x)\)的圖形和直線\(y = g(x)\)在\(x = 1\)相切,且兩圖形只有一個交點。試選出正確的選項。
(1)\(f(1)=g(1)\)
(2)\(f^{\prime}(1)=g^{\prime}(1)\)
(3)\(f^{\prime\prime}(1)=0\)
(4)存在實數\(a\neq1\)使得\(f^{\prime}(a)=g^{\prime}(a)\)
(5)存在實數\(a\neq1\)使得\(f^{\prime\prime}(a)=g^{\prime\prime}(a)\)

答案

若兩函數\(y = f(x)\)與\(y = g(x)\)在\(x = 1\)相切,根據切線的性質,則\(f(1)=g(1)\)且\(f^{\prime}(1)=g^{\prime}(1)\),(1)(2)正確。
由(1)(2)$先令p(x)=f(x)-g(x)~~(\mathrm{deg}p(x)=3且領導係數\gt0\\
\because p(1)=0=p'(1)\Rightarrow 圖形單調遞增\therefore (1,p(1))為y=p(x)圖形反曲點\\
p''(1)=0,\therefore f''(1)=0)$,(3)正確。
假設\(f(x)=x^{3}\),\(g(x)=3x - 2\),\(f^{\prime}(x)=3x^{2}\),\(g^{\prime}(x)=3\),\(f^{\prime}(1)=g^{\prime}(1)=3\),且\(f(x)\)與\(g(x)\)只有一個交點\(x = 1\),但不存在\(a\neq1\)使得\(f^{\prime}(a)=g^{\prime}(a)\),(4)錯誤。
同理,不能得出存在實數\(a\neq1\)使得\(f^{\prime\prime}(a)=g^{\prime\prime}(a)\),(5)錯誤。
答案為(1)(2)。 報錯
ChatGPT    DeepSeek

Posted in

106指考數學甲試題-3)

坐標空間中,\(O(0,0,0)\)為原點。平面\(z = h\)(其中\(0≤h≤1\))上有一以\((0,0,h)\)為圓心的圓,在此圓上依逆時針順序取8點構成正八邊形\(P_0P_1P_2P_3P_4P_5P_6P_7\),使得各線段\(\overline{OP_j}(0≤j≤7)\)的長度都是1。在\(\overrightarrow{OP_0}\)和\(\overrightarrow{OP_4}\)夾角不超過\(90^{\circ}\)的條件下,試問正八角錐體積\(V(h)\)的最大值為何?(6分)

答案

由(1)知\(\overrightarrow{OP_0}\cdot\overrightarrow{OP_4}=2h^{2}-1\),\(\overrightarrow{OP_0}\)和\(\overrightarrow{OP_4}\)夾角不超過\(90^{\circ}\),則\(\overrightarrow{OP_0}\cdot\overrightarrow{OP_4}\geq0\),即\(2h^{2}-1\geq0\),解得\(h\geq\frac{\sqrt{2}}{2}\)(因為\(0≤h≤1\),所以取\(h\)的取值範圍\(\frac{\sqrt{2}}{2}≤h≤1\))。
由(2)知\(V(h)=\frac{2\sqrt{2}}{3}(h - h^{3})\),對\(V(h)\)求導,\(V^\prime(h)=\frac{2\sqrt{2}}{3}(1 - 3h^{2})\)。
令\(V^\prime(h)=0\),即\(\frac{2\sqrt{2}}{3}(1 - 3h^{2}) = 0\),解得\(h=\frac{\sqrt{3}}{3}\)或\(h = -\frac{\sqrt{3}}{3}\)(舍去,因為\(h\in[\frac{\sqrt{2}}{2},1]\))。
在\(h\in[\frac{\sqrt{2}}{2},1]\)上分析\(V^\prime(h)\)的符號:
當\(\frac{\sqrt{2}}{2}\leq h\lt\frac{\sqrt{3}}{3}\)時,\(V^\prime(h)>0\),\(V(h)\)遞增;
當\(\frac{\sqrt{3}}{3}\lt h\leq1\)時,\(V^\prime(h)<0\),\(V(h)\)遞減。 所以\(V(h)\)在\(h=\frac{\sqrt{2}}{2}\)或\(h = \frac{\sqrt{3}}{3}\)處取得最大值。 \(V(\frac{\sqrt{2}}{2})=\frac{2\sqrt{2}}{3}(\frac{\sqrt{2}}{2}-(\frac{\sqrt{2}}{2})^{3})=\frac{2\sqrt{2}}{3}(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{4})=\frac{2\sqrt{2}}{3}\times\frac{\sqrt{2}}{4}=\frac{1}{3}\)。 \(V(\frac{\sqrt{3}}{3})=\frac{2\sqrt{2}}{3}(\frac{\sqrt{3}}{3}-(\frac{\sqrt{3}}{3})^{3})=\frac{2\sqrt{2}}{3}(\frac{\sqrt{3}}{3}-\frac{\sqrt{3}}{9})=\frac{2\sqrt{2}}{3}\times\frac{2\sqrt{3}}{9}=\frac{4\sqrt{6}}{27}\)。 比較\(\frac{1}{3}\)和\(\frac{4\sqrt{6}}{27}\)的大小: \(\frac{1}{3}=\frac{9}{27}\),\((\frac{9}{27})^2=\frac{81}{729}\),\((\frac{4\sqrt{6}}{27})^2=\frac{96}{729}\),所以\(\frac{4\sqrt{6}}{27}>\frac{1}{3}\)。
所以正八角錐體積\(V(h)\)的最大值為\(\frac{4\sqrt{6}}{27}\)。 報錯
ChatGPT    DeepSeek

Posted in

108指考數學甲試題-07

已知三次實係數多項式函數\(f(x)=ax^{3}+bx^{2}+cx + 2\),在\(-2\leq x\leq1\)範圍內的圖形如示意圖。試選出正確的選項。

(1)\(a>0\)
(2)\(b>0\)
(3)\(c>0\)
(4)方程式\(f(x)=0\)恰有三實根
(5)\(y = f(x)\)圖形的反曲點的\(y\)坐標為正

答案

(1) 觀察函數圖像,當\(x\)趨向正無窮時,\(y\)也趨向正無窮,對於三次函數\(y = ax^{3}+bx^{2}+cx + d\)(\(a\neq0\)),當\(a>0\)時才有此性質,所以\(a>0\),(1)正確。
(2) 對\(f(x)=ax^{3}+bx^{2}+cx + 2\)求導得\(f'(x)=3ax^{2}+2bx + c\),其對稱軸為\(x = -\frac{b}{3a}\)。由圖像可知,函數的對稱軸在\(y\)軸左側,即\(-\frac{b}{3a}<0\),又因為\(a>0\),所以\(b>0\),(2)正確。
(3) 由\(f(x)\)的圖像可知,在\(x = 0\)處,函數的切線斜率為負。\(f'(x)=3ax^{2}+2bx + c\),\(f'(0)=c\),所以\(c<0\),(3)錯誤。 (4) 從給定區間\(-2\leq x\leq1\)的圖像能看出,函數\(y = f(x)\)的圖像與\(x\)軸有三個交點,這表明方程式\(f(x)=0\)恰有三個實根,(4)正確。 (5) 先對\(f'(x)=3ax^{2}+2bx + c\)求導得\(f''(x)=6ax + 2b\),令\(f''(x)=0\),可得反曲點的\(x\)坐標為\(x = -\frac{b}{3a}\)。將\(x = -\frac{b}{3a}\)代入\(f(x)\)得\(y = f(-\frac{b}{3a})=a(-\frac{b}{3a})^{3}+b(-\frac{b}{3a})^{2}+c(-\frac{b}{3a}) + 2\),化簡可得\(y = 2-\frac{b^{3}}{27a^{2}}-\frac{bc}{3a}\),其值不一定為正,(5)錯誤。 答案為(1)(2)(4)。 報錯
ChatGPT    DeepSeek

Posted in

108指考數學甲試題-4)

設\(f(x)\)為實係數多項式函數,且\(xf(x)=3x^{4}-2x^{3}+x^{2}+\int_{1}^{x}f(t)dt\)(\(x\geq1\))。試證明恰有一個大於1的正實數\(a\)滿足\(\int_{0}^{a}f(x)dx = 1\)。(4分)

答案

由(3)知\(f(x)=4x^{3}-3x^{2}+2x - 1\),則\(\int_{0}^{a}f(x)dx=\int_{0}^{a}(4x^{3}-3x^{2}+2x - 1)dx\)。
\(\int_{0}^{a}(4x^{3}-3x^{2}+2x - 1)dx=(x^{4}-x^{3}+x^{2}-x)\big|_{0}^{a}=a^{4}-a^{3}+a^{2}-a\)。
令\(g(a)=a^{4}-a^{3}+a^{2}-a - 1\)(\(a>1\))。
對\(g(a)\)求導得\(g'(a)=4a^{3}-3a^{2}+2a - 1\)。
當\(a>1\)時,\(4a^{3}-3a^{2}+2a - 1=a^{2}(4a - 3)+2a - 1>0\),所以\(g(a)\)在\((1,+\infty)\)上單調遞增。
又\(g(1)=1^{4}-1^{3}+1^{2}-1 - 1=-1<0\) ,\(\lim_{a\rightarrow+\infty}g(a)=+\infty\)。 根據零點存在定理,在單調遞增函數中,當函數在某區間兩端點函數值異號時,函數在該區間內有且只有一個零點。 所以恰有一個大於1的正實數\(a\),使得\(g(a)=0\),即恰有一個大於1的正實數\(a\)滿足\(\int_{0}^{a}f(x)dx = 1\)。 報錯
ChatGPT    DeepSeek

我要來個錯題通知
Powered by