Posted in

109指考數學甲(補考)試題-02

某質點在數線上移動,已知其位置坐標為\(s(t)=\int_{0}^{t}(-x^{2}+6x)dx\),其中\(t\)表時間且\(0 \leq t \leq10\)。若此質點的速度在時段\(0 \leq t < a\)遞增,且在時段\(a < t \leq10\)遞減,試選出正確的\(a\)值。 (1)3 (2)4 (3)5 (4)6 (5)7

[單選題]
答案

首先,根據微積分基本定理,速度\(v(t)=s'(t)=-t^{2}+6t\)。
對\(v(t)\)求導得\(v'(t)=-2t + 6\)。
令\(v'(t)=0\),即\(-2t + 6 = 0\),解得\(t = 3\)。
當\(v'(t)>0\)時,\(-2t + 6>0\),解得\(t < 3\),此時速度\(v(t)\)遞增; 當\(v'(t)<0\)時,\(-2t + 6<0\),解得\(t>3\),此時速度\(v(t)\)遞減。
所以\(a = 3\),答案為(1)。


Posted in

110指考數學甲試題-07

設\(F(x)\)為一實數多項式且\(F'(x)=f(x)\) 。已知\(f'(x)>x^{2}+1.1\)對所有的實數\(x\)均成立,試選出正確的選項。
(1)\(f'(x)\)為遞增函數
(2)\(f(x)\)為遞增函數
(3)\(F(x)\)為遞增函數
(4)\([f(x)]^{2}\)為遞增函數
(5)\(f(f(x))\)為遞增函數

[多選]
答案

(1)因為\(f''(x)=(f'(x))'>2x未必大於0\),\(f'(x)\)非遞增函數,(1)錯誤。
(2)由\(f'(x)>x^{2}+1.1>0\)可知,\(f'(x)>0\)恆成立,所以\(f(x)\)為遞增函數,(2)正確。
(3)\(F'(x)=f(x)\),但僅知道\(f(x)\)遞增,不能直接得出\(F(x)\)為遞增函數,比如\(f(x)=x\)遞增,\(F(x)=\frac{1}{2}x^{2}\)在\((-\infty,0)\)上遞減,在\((0,+\infty)\)上遞增,(3)錯誤。
(4)令\(y = [f(x)]^{2}\),則\(y' = 2f(x)f'(x)\),雖然\(f'(x)>0\),但\(f(x)\)的值有正有負,所以\(y'\)的正負不確定,\([f(x)]^{2}\)不一定是遞增函數,(4)錯誤。
(5)函數\(f(f(x))\)的導函數為\(f'(f(x)) \times f'(x)\)。
因為\(f'(f(x)) \times f'(x) > \left( (f(x))^2 + 1.1 \right) \times f'(x)\)對所有實數\(x\)均成立,
且\((f(x))^2 + 1.1\)恆正、\(f'(x)\)恆正,所以\(f(f(x))\)的導函數恆正,
因此\(f(f(x))\)是遞增函數。答案為(2)(5)。


Posted in

112分科測驗數學甲考科試題-03

試問極限
\[ \lim_{n \to \infty} \frac{3}{n^2} \left( \sqrt{4n^2 + 9 \times 1^2} + \sqrt{4n^2 + 9 \times 2^2} + \cdots + \sqrt{4n^2 + 9 \times (n-1)^2} \right) \]
的值可用下列哪一個定積分表示?
(1) \(\int_0^3 \sqrt{1+x^2} \, dx\)
(2) \(\int_0^3 \sqrt{1+9x^2} \, dx\)
(3) \(\int_0^3 \sqrt{4+x^2} \, dx\)
(4) \(\int_0^3 \sqrt{4+9x^2} \, dx\)
(5) \(\int_0^3 \sqrt{4x^2+9} \, dx\)

[單選]
答案

將極限轉化為定積分,令 \(\Delta x = \frac{3}{n}~~(0\le k\le n-1,0\le x\le3)\),則
\(\Delta A=\frac{3}{n^2} ( \sqrt{4n^2 + 9 \times k^2}=\frac{3}{n} ( \sqrt{4 + ({\frac{3k}{n}})^2})
=\frac{3}{n} ( \sqrt{4 + (x_{k})^2})=\Delta x\times y_k 。\\
極限可表示為 \int_0^3 \sqrt{4 + x^2} \, dx\)。答案為(3)。


Posted in

112分科測驗數學甲考科試題-05

考慮實係數多項式 \(f(x)=x^4-4x^3-2x^2+ax+b\)。已知方程式 \(f(x)=0\) 有虛根 \(1+2i\) (其中 \(i=\sqrt{-1}\)),試選出正確的選項。
(1) \(1-2i\) 也是 \(f(x)=0\) 的根
(2) \(a, b\) 皆為正數
(3) \(f'(2.1)<0\)
(4) 函數 \(y=f(x)\) 在 \(x=1\) 有局部極小值
(5) \(y=f(x)\) 圖形反曲點的 \(x\) 坐標皆大於0

[多選]
答案

選項(1):
實係數多項式虛根成共軛對,\(1 + 2i\)是根,則\(1 - 2i\)必為根,正確。
選項(2):
由\((x - (1 + 2i))(x - (1 - 2i)) = x^2 - 2x + 5\),對\(f(x)\)作多項式長除法得餘式0,可得\(a = -26\),\(b = -60\),非正數,錯誤。
選項(3):\(f'(x) = 4x^3 - 12x^2 - 4x - 26\),計算\(f'(2.1)\):\(4(2.1)^3 - 12(2.1)^2 - 4(2.1) - 26 < 0\),正確。 選項(4):\(f'(1) = 4 - 12 - 4 - 26 = -38 \neq 0\),\(x = 1\)非極值點,錯誤。 選項(5):\(f''(x) = 12x^2 - 24x - 4\),令\(f''(x) = 0\),解\(x = \frac{24 \pm \sqrt{768}}{24} 未必大於 0\),錯誤。


Posted in

112分科測驗數學甲考科試題-13

[12-14為題組]
試證明$y=f(x)$圖形與$\Omega$在$P$點有共同的切線。(非選擇題,4分)

[非選擇]
答案

已知 \( y = f(x) = \frac{1}{2}x^2 \),求導得 \( f'(x) = x \)。
因此 \( y = f(x) \) 在點 \( P\left(1,\frac{1}{2}\right) \) 處的切線斜率:
\( m_1 = f'(1) = 1 \)。

又 \( P \) 在圓 \( \Omega \) 上,圓在 \( P \) 點的切線與半徑 \( \overrightarrow{CP} \) 垂直。
由 \( \overrightarrow{CP} \) 的斜率為 \( \frac{\frac{1}{2}}{-1} = -1 \),得圓在 \( P \) 點的切線斜率:
\( m_2 = 1 \)。

因 \( m_1 = m_2 \) 且切線均過 \( P \),故 \( y = f(x) \) 與 \( \Omega \) 在 \( P \) 點有共同切線。


Posted in

113分科測驗數學甲試題07

坐 標 平 面 上,考 慮 兩 函 數 \( f (x) = x^{5}-5x^{3}+5x^{2}+5\) 與 \( g(x)=\sin(\frac{\pi}{3}x+\frac{\pi}{2})\) 的 函 數 圖 形(其中 \( \pi \) 為圓周率)。試 選 出 正 確 的 選 項。
(1) \( f'(1) = 0\)
(2) \( y = f (x) \) 在 閉 區 間 \([0,2]\) 為遞增
(3) \( y = f (x) \) 在 閉 區 間 \([0,2]\) 為凹向上
(4) 對 任 意 實 數 \( x\),\( g(x + 6\pi) = g(x)\)
(5) \( y = f (x) \) 與 \( y = g(x) \) 在 閉 區 間 \([3,4]\) 皆為遞增

[多選]
答案

(1) \(f'(x)=5x^{4}-15x^{2}+10x\),\(f'(1)=5 - 15 + 10 = 0\),(1) 對;
(2) \(f'(x)=5x(x^{3}-3x + 2)=5x(x - 1)^{2}(x + 2)\),在 \([0,2]\) 上 \(f'(x)\geq0\),\(y = f (x)\) 遞增,(2) 對;
(3) \(f''(x)=20x^{3}-30x + 10\),在 \([0,2]\) 上 \(f''(x)\) 有正有負,不是凹向上,(3) 錯;
(4) \(g(x)=\sin(\frac{\pi}{3}x)\) 的周期 \(T=\frac{2\pi}{\frac{\pi}{3}} = 6\),不是 \(6\pi\),(4) 錯;
(5) \(f'(x)>0\) 在 \([3,4]\) 成立,
$g(x)週期6且x=3時\theta=\frac{\pi}{3}\times3+\frac{\pi}{2}=\frac{3}{2}\pi,\\x=4時\theta=\frac{\pi}{3}\times4+\frac{\pi}{2}=\frac{11}{6}\pi,此區間g(x)遞增,(5)對。$
答案是(1)(2)(5)。


Posted in

113分科測驗數學甲試題15

坐 標 平 面 上,設 \( \Gamma \) 為 三 次 函 數 \( f(x)=x^{3}-9x^{2}+15x – 4\) 的 函 數 圖 形。試問下列何者為 \( f (x) \) 的導函數?
(1) \(x^{2}-9x + 15\)
(2) \(3x^{3}-18x^{2}+15x – 4\)
(3) \(3x^{3}-18x^{2}+15x\)
(4) \(3x^{2}-18x + 15\)
(5) \(x^{2}-18x + 15\)

[非選擇]
答案

根據求導公式 \((x^{n})^\prime=nx^{n - 1}\),對 \(f(x)=x^{3}-9x^{2}+15x - 4\) 求導,可得 \(f^\prime(x)=3x^{2}-18x + 15\),答案是(4)。


Posted in

111分科數學甲試題-14

有一積木,其中\(ACFD\)和\(ABED\)是兩個全等的等腰梯形,\(BCFE\)是一個矩形。設\(A\)點在直線\(BC\)的投影為\(M\)且在平面\(BCFE\)的投影為\(P\)。已知\(\overline{AD}=30\) ,\(\overline{CF}=40\) ,\(\overline{AP}=15\)且\(\overline{BC}=10\) 。將線段\(\overline{AP}\)的\(n\)等分點沿著向量\(\overrightarrow{AP}\)的方向依序設為\(A = P_{0},P_{1},\cdots,P_{n – 1},P_{n}=P\) 。在每一個分段\(\overline{P_{k – 1}P_{k}}\) ,考慮以通過\(P_{k}\)的水平面與此積木所截的矩形為底、\(\overline{P_{k – 1}P_{k}}\)為高,所形成的長方體。請利用此切片方法寫下估計此積木體積的黎曼和(不需化簡),且以定積分形式表示此積木的體積並求其值。

[非選擇]
答案

黎曼和:\(\sum_{k = 1}^{n}(20\frac{15(k - 1)}{n}+\frac{4}{9}(\frac{15(k - 1)}{n})^{2})\frac{15}{n}\)。定積分形式:\(V=\int_{0}^{15}(20x+\frac{4}{9}x^{2})dx\) 。計算定積分:\(\int_{0}^{15}(20x+\frac{4}{9}x^{2})dx=(10x^{2}+\frac{4}{27}x^{3})\big|_{0}^{15}=10\times15^{2}+\frac{4}{27}\times15^{3}=2250 + 500 = 2750\) ,所以積木體積為\(2750\) 。


Posted in

111分科數學甲試題-15~17

考慮坐標平面上之向量\(\overrightarrow{a}\)、\(\overrightarrow{b}\)滿足\(|\overrightarrow{a}| + |\overrightarrow{b}| = 9\)以及\(|\overrightarrow{a} – \overrightarrow{b}| = 7\)。若令\(|\overrightarrow{a}| = x\),其中\(1 \lt x \lt 8\),且令\(\overrightarrow{a}\)、\(\overrightarrow{b}\)的夾角為\(\theta\),則利用向量\(\overrightarrow{a}\)、\(\overrightarrow{b}\)、\(\overrightarrow{a} – \overrightarrow{b}\)所形成的三角形,可將\(\cos\theta\)以x表示成\(\frac{c}{9x – x^2} + d\),其中c、d為常數且\(c \gt 0\)。令此表示式為\(f(x)\),且其定義域為\(\{x \mid 1 \lt x \lt 8\}\)。試回答下列問題:
15.求\(f(x)\)及其導函數。
16.說明\(f(x)\)在定義域中遞增、遞減的情況。並說明x為多少時\(\overrightarrow{a}\)、\(\overrightarrow{b}\)的夾角\(\theta\)最大。
17.利用\(f(x)\)的一次估計(一次近似),求當\(x = 4.96\)時,\(\cos\theta\)約為多少?

[非選擇]
答案

15. 求\(f(x)\)及其導函數已知\(|\vec{a}| = x\),則\(|\vec{b}| = 9 - x\)。由\(|\vec{a} - \vec{b}| = 7\),根據向量模長公式:\(7^2 = x^2 + (9 - x)^2 - 2x(9 - x)\cos\theta\)
展開整理得:\(49 = 2x^2 - 18x + 81 - 2x(9 - x)\cos\theta \implies \cos\theta = \frac{16}{9x - x^2} - 1\)
故\(f(x) = \frac{16}{9x - x^2} - 1\)。求導:\(f'(x) = \frac{16 \cdot (2x - 9)}{(9x - x^2)^2} = \frac{32x - 144}{(9x - x^2)^2}\)
16. \(f(x)\)的單調性與\(\theta\)最大值當\(1 < x < 4.5\),\(f'(x) < 0\),\(f(x)\)遞減;當\(4.5 < x < 8\),\(f'(x) > 0\),\(f(x)\)遞增。\(\cos\theta\)越小,\(\theta\)越大。\(f(x)\)在\(x = 4.5\)時取最小值,此時\(\cos\theta=-\frac{17}{81}\)最小,故\(x = 4.5\)時,\(\theta\)最大。17. 一次估計求\(\cos\theta\)取\(x_0 = 5\),計算:\(f(5) = \frac{16}{25} - 1 = -0.2, \quad f'(5) = \frac{16}{400} = 0.04\)
當\(x = 4.96\),\(\Delta x = -0.04\),線性近似:\(f(4.96) \approx f(5) + f'(5) \cdot (-0.04) = -0.2 - 0.0016 = -0.2016\)