坐標平面上,圓T完全落在四個不等式:\( x-y \leq 4 \),\( x+y \leq 18 \),\( x-y \geq -2 \),\( x+y \geq -24 \)所圍成的區域內,則T最大可能面積為 __________ \(\pi\)(化成最簡分數)
區域為平行四邊形,兩組平行線距離:\( x-y \) 組:\( \frac{|4-(-2)|}{\sqrt{2}} = \frac{6}{\sqrt{2}} = 3\sqrt{2} \);\( x+y \) 組:\( \frac{|18-(-24)|}{\sqrt{2}} = \frac{42}{\sqrt{2}} = 21\sqrt{2} \)。取短邊 \( 3\sqrt{2} \) 為直徑,半徑 \( \frac{3\sqrt{2}}{2} \),面積 \( \pi \left( \frac{3\sqrt{2}}{2} \right)^2 = \frac{9}{2}\pi \)。答案:\( \frac{9}{2} \) 報錯
ChatGPT DeepSeek

