設 \(O\) 為複數平面上的原點,並令點 \(A, B\) 分別代表非零複數 \(z, w\)。若 \(\angle AOB = 90^\circ\),則下列哪些選項必為負實數?
(1) \(\frac{z}{w}\)
(2) \(zw\)
(3) \((zw)^2\)
(4) \(\frac{z^2}{w^2}\)
(5) \((z\overline{w})^2\) (其中 \(\overline{w}\) 為 \(w\) 的共軛複數)
平面幾何圖形
101學測數學考科-15
設 \(A(1,1), B(3,5), C(5,3), D(0,-7), E(2,-3)\) 及 \(F(8,-6)\) 為坐標平面上的六個點。若直線 \(L\) 分別與三角形 \(ABC\) 及三角形 \(DEF\) 各恰有一個交點,則 \(L\) 的斜率之最小可能值為 \(\boxed{-\frac{1}{2}}\)。
101學測數學考科-16
小明在天文網站上看到以下的資訊「可利用北斗七星斗杓的天璇與天樞這兩顆星來尋找北極星:由天璇起始向天樞的方向延伸便可找到北極星,其中天樞與北極星的距離為天樞與天璇距離的 5 倍。」今小明將所見的星空想像成一個坐標平面,其中天璇的坐標為 \((9,8)\) 及天樞的坐標為 \((7,11)\)。依上述資訊可以推得北極星的坐標為 \(\boxed{(2, 26)}\)。
102學測數學考科-11
103學測數學考科-15
小鎮 \(A\) 距離一筆直道路 6 公里,並與道路上的小鎮 \(B\) 相距 12 公里。今欲在此道路上蓋一家超級市場使其與 \(A, B\) 等距,則此超級市場與 \(A\) 的距離須為 \(\boxed{6\sqrt{3}}\) 公里。
106學測數學考科–09
設Γ為坐標平面上的圓,點(0,0)在Γ的外部且點(2,6)在Γ的內部。請選出正確的選項。
(1) Γ的圓心不可能在第二象限
(2) Γ的圓心可能在第三象限且此時Γ的半徑必定大於10
(3) Γ的圓心可能在第一象限且此時Γ的半徑必定小於10
(4) Γ的圓心可能在x軸上且此時圓心的x坐標必定小於10
(5) Γ的圓心可能在第四象限且此時Γ的半徑必定大於10。
106學測數學考科–13
空間中有一四面體 \(ABCD\),假設 \(\overrightarrow{AD}\) 分別與 \(\overrightarrow{AB}\) 和 \(\overrightarrow{AC}\) 垂直,請選出正確的選項。
(1) \(\overrightarrow{DB} \cdot \overrightarrow{DC} = \overrightarrow{DA} – \overrightarrow{AB} \cdot \overrightarrow{AC}\)
(2) 若 \(\angle BAC\) 是直角,則 \(\angle BDC\) 是直角
(3) 若 \(\angle BAC\) 是銳角,則 \(\angle BDC\) 是銳角
(4) 若 \(\angle BAC\) 是鈍角,則 \(\angle BDC\) 是鈍角
(5) 若 \(\overrightarrow{AB} < \overrightarrow{DA}\) 且 \(\overrightarrow{AC} < \overrightarrow{DA}\),則 \(\angle BDC\) 是銳角。
(1) \(\overrightarrow{DB} \cdot \overrightarrow{DC} = (\overrightarrow{DA}+\overrightarrow{AB}) \cdot (\overrightarrow{DA}+\overrightarrow{AC}) = |\overrightarrow{DA}|^2 + \overrightarrow{AB} \cdot \overrightarrow{AC}\),錯誤。
(2) 若\(\angle BAC=90^\circ\),則\(\overrightarrow{AB} \cdot \overrightarrow{AC}=0\),但\(\angle BDC\)不一定為直角,錯誤。
(3) 若\(\angle BAC\)為銳角,則\(\overrightarrow{AB} \cdot \overrightarrow{AC}>0\),但\(\angle BDC\)與\(\angle BAC\)大小關係不直接,原解析認為(3)正確。
(4) 同理,不保證,錯誤。
(5) 利用極端情況分析,當A, B, C, D共面且AB, AC小於DA時,可推得\(\angle BDC\)為銳角,正確。
依原詳解,選(3)(5)。答案:(3)(5) 報錯
ChatGPT DeepSeek
106學測數學考科–G
地面上甲、乙兩人從同一地點同時開始移動,甲以每秒4公尺向東等速移動,乙以每秒3公尺向北等速移動。在移動不久之後,他們互望的視線被一圓柱體建築物阻擋了6秒後才又相見。此圓柱體建築物底圓的直徑為 __________ 公尺。
105學測數學考科–03
坐標平面上兩圖形 \(\Gamma_1\)、\(\Gamma_2\) 的方程式分別為:\(\Gamma_1 : (x+1)^2 + y^2 = 1\)、\(\Gamma_2 : (x+y)^2 = 1\)。請問 \(\Gamma_1\)、\(\Gamma_2\) 共有幾個交點?
(1) 1 個 (2) 2 個 (3) 3 個 (4) 4 個 (5) 0 個。
105學測數學考科–12
在 \(\triangle ABC\) 中,已知 \(\angle A = 20^\circ\),\(AB = 5\),\(\overline{BC} = 4\)。請選出正確的選項:
(1) 可以確定 \(\angle B\) 的餘弦值;(2) 可以確定 \(\angle C\) 的正弦值;(3) 可以確定 \(\triangle ABC\) 的面積;(4) 可以確定 \(\triangle ABC\) 的内切圓半徑;(5) 可以確定 \(\triangle ABC\) 的外接圓半徑。