Posted in

107學測數學考科-01

給定相異兩點 \( A, B \),試問空間中能使 \(\triangle PAB\) 成一正三角形的所有點 \( P \) 所成集合為下列哪一選項?
(1)兩個點 (2)一線段 (3)一直線 (4)一圓 (5)一平面。

答案

滿足 \( \overline{PA} = \overline{PB} = \overline{AB} \) 的點 P 在以 AB 為軸、M 為中點、半徑為 \( \frac{\sqrt{3}}{2} \overline{AB} \) 的圓上。故選(4)。答案:(4) 報錯
ChatGPT    DeepSeek

Posted in

107學測數學考科-10

已知坐標平面上 \(\triangle ABC\),其中 \(\overset{\rightharpoonup}{AB} = (-4,3)\),且 \(\overset{\rightharpoonup}{AC} = \left( \frac{2}{5}, \frac{4}{5} \right)\)。試選出正確的選項。
(1) \(\overline{BC} = 5\)
(2) \(\triangle ABC\) 是直角三角形
(3) \(\triangle ABC\) 的面積為 \(\frac{11}{5}\)
(4) \(\sin B \gt \sin C\)
(5) \(\cos A \gt \cos B\)。

答案

(1) \( \overset{\rightharpoonup}{BC} = \overset{\rightharpoonup}{AC} - \overset{\rightharpoonup}{AB} = \left( \frac{22}{5}, -\frac{11}{5} \right) \),長度 \( \frac{11\sqrt{5}}{5} \neq 5 \) ✗。
(2) \( \overline{AB}=5 \),\( \overline{AC}=\frac{2\sqrt{5}}{5} \),\( \overline{BC}=\frac{11\sqrt{5}}{5} \),檢查得 \( \overline{AC}^2 + \overline{BC}^2 = \frac{4}{5} + \frac{121}{5} = 25 = \overline{AB}^2 \) ✓。
(3) 面積 \( \frac{1}{2} \times \frac{2\sqrt{5}}{5} \times \frac{11\sqrt{5}}{5} = \frac{11}{5} \) ✓。
(4) \( \sin B = \frac{\overline{AC}}{\overline{AB}} = \frac{2\sqrt{5}}{25} \),\( \sin C = 1 \),故 \( \sin B \lt \sin C \) ✗。
(5) \( \cos A = \frac{\overset{\rightharpoonup}{AB} \cdot \overset{\rightharpoonup}{AC}}{5 \cdot \frac{2\sqrt{5}}{5}} = \frac{-8/5+12/5}{2\sqrt{5}} = \frac{4/5}{2\sqrt{5}} = \frac{2}{5\sqrt{5}} \),\( \cos B = \frac{\overset{\rightharpoonup}{BA} \cdot \overset{\rightharpoonup}{BC}}{5 \cdot \frac{11\sqrt{5}}{5}} = \frac{ (4,-3) \cdot (22/5,-11/5) }{11\sqrt{5}} = \frac{88/5+33/5}{11\sqrt{5}} = \frac{121/5}{11\sqrt{5}} = \frac{11}{5\sqrt{5}} \),故 \( \cos A \lt \cos B \) ✗。
故選(2)(3)。答案:(2)(3) 報錯
ChatGPT    DeepSeek

Posted in

108學測數學考科-01

點\(A(1,0)\)在單位圓\(\Gamma: x^2 + y^2 = 1\)上。試問:\(\Gamma\)上除了\(A\)點以外,還有幾個點到直線\(L: y = 2x\)的距離,等於\(A\)點到\(L\)的距離?
(1) 1個 (2) 2個 (3) 3個 (4) 4個 (5) 0個。

答案

過A作平行L的直線交圓於B;在L另一側作等距平行線交圓於C、D。故除A外,尚有B、C、D三點,共3個。答案:(3) 報錯
ChatGPT    DeepSeek

Posted in

108學測數學考科-10

在\(\triangle ABC\)中,已知\(50^\circ \lt \angle A \lt \angle B \lt 60^\circ\),試選出正確的選項:
(1) \(\sin A \lt \sin B\) (2) \(\sin B \lt \sin C\) (3) \(\cos A \lt \cos B\) (4) \(\sin C \lt \cos C\) (5) \(\overline{AB} \lt \overline{BC}\)。

答案

由角度範圍知\(50^\circ \lt A \lt B \lt 60^\circ\),則\(60^\circ \lt C \lt 80^\circ\)。
(1) 在\(0^\circ-90^\circ\),角度大則正弦值大,故\(\sin A \lt \sin B\)。
(2) 同理\(\sin B \lt \sin C\)。
(3) 餘弦函數遞減,故\(\cos A \gt \cos B\)。
(4) \(C \gt 45^\circ\),故\(\sin C \gt \cos C\)。
(5) 大角對大邊,\(\angle C \gt \angle A\),故\(\overline{AB} \gt \overline{BC}\)。
故選(1)(2)。答案:(1)(2) 報錯
ChatGPT    DeepSeek

Posted in

108學測數學考科-E

如圖(此為示意圖),在\(\triangle ABC\)中,\(\overline{AD}\)交\(\overline{BC}\)於\(D\)點,\(\overline{BE}\)交\(\overline{AD}\)於\(E\)點,且\(\angle ACB = 30^\circ\),\(\angle EDB = 60^\circ\),\(\angle AEB = 120^\circ\)。若\(\overline{CD} = 15\),\(\overline{ED} = 7\),則\(\overline{AB} = \) __________。

答案

由角度關係可推\(\triangle BDE\)為正三角形,\(\overline{BE}=7\);\(\triangle ACD\)中,\(\angle ACD=30^\circ\),\(\angle ADC=120^\circ\),推得\(\overline{AD}=15\),故\(\overline{AE}=8\)。在\(\triangle ABE\)中,\(\angle AEB=120^\circ\),由餘弦定理:\(\overline{AB}^2 = 8^2+7^2-2\cdot8\cdot7\cdot\cos120^\circ = 64+49+56=169\),故\(\overline{AB}=13\)。答案:13 報錯
ChatGPT    DeepSeek

Posted in

109學測數學考科-07

坐標平面上,函數圖形 \(y = -\sqrt{3}x^3\) 上有兩點 \(P, Q\) 到原點距離皆為 1。已知點 \(P\) 坐標為 \((\cos\theta, \sin\theta)\),試問點 \(Q\) 坐標為何?
(1) \((\cos(-\theta), \sin(-\theta))\)
(2) \((-\cos\theta, \sin\theta)\)
(3) \((\cos(-\theta), -\sin\theta)\)
(4) \((-\cos\theta, \sin(-\theta))\)
(5) \((\cos\theta, -\sin\theta)\)。

答案

函數 \(y = -\sqrt{3}x^3\) 對原點對稱,P與Q對稱於原點,故Q坐標為 \((-\cos\theta, -\sin\theta)\)。選項(4)化簡後為 \((-\cos\theta, -\sin\theta)\),故選(4)。 報錯
ChatGPT    DeepSeek

Posted in

109學測數學考科-13

如示意圖,四面體 \( OABC \) 中,\( \triangle OAB \) 和 \( \triangle OAC \) 均為正三角形,\( \angle BOC = 30^\circ \)。試選出正確的選項。

(1) \( BC \gt OC \)
(2) \( \triangle OBC \) 是等腰三角形
(3) \( \triangle OBC \) 的面積大於 \( \triangle OAB \) 的面積
(4) \( \angle CAB = 30^\circ \)
(5) 平面 \( OAB \) 和平面 \( OAC \) 的夾角(以銳角計)小於 \( 30^\circ \)。

答案

令OA=a,可證△OBC與△ABC全等,且為等腰三角形,∠CAB = 30°。
由正弦定理,BC < OC。
△OBC面積 = \(\frac{1}{2}a^2 \sin 30^\circ\),△OAB面積 = \(\frac{1}{2}a^2 \sin 60^\circ\),故△OBC面積較小。
平面OAB與OAC夾角大於30°。
故選(2)(4)。 報錯
ChatGPT    DeepSeek

Posted in

109學測數學考科-D

平面上有一等形 \(ABCD\),其中 \(AB=BC=\sqrt{2}\),\(\overline{AD}=\overline{CD}=2\),\(\angle BAD=135^\circ\)。則 \(\overline{AC}=\) __________(化為最簡根式)

答案

由餘弦定理得 \(\overline{BD} = \sqrt{10}\)。等形面積為2,又面積 = \(\frac{1}{2} \times AC \times BD\),得 \(AC = \frac{4}{\sqrt{10}} = \frac{2\sqrt{10}}{5}\)。答案:\(\frac{2\sqrt{10}}{5}\) 報錯
ChatGPT    DeepSeek

Posted in

110學測數學考科_03

如右圖,\(\triangle ABC\) 為銳角三角形,\( P \) 為 \(\triangle ABC\) 外接圓 \( \Gamma \) 外的一點,且 \( PB \) 與 \( PC \) 都與圓 \( \Gamma \) 相切。設 \(\angle BPC = \theta\),試問 \( \cos A \) 的值為下列哪一個選項?
(1) \(\sin 2\theta\)
(2) \(\frac{\sin \theta}{2}\)
(3) \(\sin \frac{\theta}{2}\)
(4) \(\frac{\cos \theta}{2}\)
(5) \(\cos \frac{\theta}{2}\)

答案

連接圓心 O,則 \(\angle OBP = \angle OCP = 90^\circ\),四邊形 OBPC 中,\(\angle BOC = 360^\circ - 90^\circ - 90^\circ - \theta = 180^\circ - \theta\)。圓周角 \(\angle A = \frac{1}{2} \angle BOC = 90^\circ - \frac{\theta}{2}\),故 \(\cos A = \cos(90^\circ - \frac{\theta}{2}) = \sin \frac{\theta}{2}\)。(3) 報錯
ChatGPT    DeepSeek

Posted in

110學測數學考科_04

設 \( a \) 與 \( b \) 都是平面上不為零的向量。若 \( 2\overset{\rightharpoonup}{a} + \overset{\rightharpoonup}{b} \) 與 \( \overset{\rightharpoonup}{a} + 2\overset{\rightharpoonup}{b} \) 所張成的三角形面積為 \( 6 \),則 \( 3\overset{\rightharpoonup}{a} + \overset{\rightharpoonup}{b} \) 與 \( \overset{\rightharpoonup}{a} + 3\overset{\rightharpoonup}{b} \) 所張成的三角形面積為下列哪一個選項?
(1) 8
(2) 9
(3) 12
(4) 13.5
(5) 16

答案

設 \( a, b \) 所張成的平行四邊形面積為 \( \Delta \),則 \( 2a+b \) 與 \( a+2b \) 所張成的平行四邊形面積為 \( \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} \Delta = 3\Delta \),三角形面積為 \( \frac{1}{2} \times 3\Delta = 6 \),得 \( \Delta = 4 \)。\( 3a+b \) 與 \( a+3b \) 所張成的平行四邊形面積為 \( \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} \Delta = 8 \times 4 = 32 \),三角形面積為 \( \frac{1}{2} \times 32 = 16 \)。(5) 報錯
ChatGPT    DeepSeek

我要來個錯題通知
Powered by