在同一平面上,相距 \(7\) 公里的 \(A \cdot B\) 兩砲臺,\(A\) 在 \(B\) 的正東方。某次演習時,\(A\) 向西偏北 \(\theta\) 方向發射砲彈,\(B\) 則向東偏北 \(\theta\) 方向發射砲彈,其中 \(\theta\) 為銳角,觀測回報兩砲彈皆命中 9 公里外的同一目標 \(P\)。接著 \(A\) 改向西偏北 \(\frac{\theta}{2}\) 方向發射砲彈,彈著點為 \(9\) 公里外的點 \(Q\)。試問砲臺 \(B\) 與彈著點 \(Q\) 的距離 \(BQ\) 為何?
(1) 4 公里 (2) 4.5 公里 (3) 5 公里 (4) 5.5 公里 (5) 6 公里
餘弦定理
114分科測驗數學乙考科試卷-08
平面上三角形ABC,\(\angle A=91^\circ\)、\(\angle C=29^\circ\),令\(\overline{BC}=a\)、\(\overline{CA}=b\)、\(\overline{AB}=c\),試選出正確的選項?
(1) \(a^2\gt b^2+c^2\)
(2) \(\frac{c}{a}\gt\sin29^\circ\)
(3) \(\frac{b}{a}\gt\cos29^\circ\)
(4) \(\frac{a^2+b^2-c^2}{ab}\lt\sqrt{3}\)
(5) 外接圓半徑小於c
已知三角形 \(ABC\) 中:
\[
\angle A = 91^\circ, \quad \angle C = 29^\circ, \quad \angle B = 60^\circ
\]
(因為 \(180^\circ - 91^\circ - 29^\circ = 60^\circ\))
邊長:
\[
BC = a, \quad CA = b, \quad AB = c
\]
(即 \(a\) 對 \(\angle A\),\(b\) 對 \(\angle B\),\(c\) 對 \(\angle C\))
---
**(1) \( a^2 > b^2 + c^2 \)**
由餘弦定理:
\[
a^2 = b^2 + c^2 - 2bc\cos A
\]
\(\cos 91^\circ < 0\),所以 \(-2bc\cos A > 0\),因此
\[
a^2 > b^2 + c^2
\]
✅ 正確。
---
**(2) \( \frac{c}{a} > \sin 29^\circ \)**
正弦定理:
\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R
\]
所以
\[
\frac{c}{a} = \frac{\sin C}{\sin A} = \frac{\sin 29^\circ}{\sin 91^\circ}
\]
\(\sin 91^\circ \approx \sin 90^\circ = 1\),實際略大於 1(\(\sin 91^\circ \approx 0.99985\)),所以
\[
\frac{c}{a} \approx 0.99985^{-1} \times \sin 29^\circ \approx 1.00015 \times 0.4848 \approx 0.48487
\]
而 \(\sin 29^\circ \approx 0.4848\),比較:
\[
\frac{c}{a} \approx 0.48487 > 0.4848
\]
✅ 正確(雖然很接近,但確實大於)。
---
**(3) \( \frac{b}{a} > \cos 29^\circ \)**
\[
\frac{b}{a} = \frac{\sin B}{\sin A} = \frac{\sin 60^\circ}{\sin 91^\circ} \approx \frac{0.866025}{0.99985} \approx 0.86615
\]
\(\cos 29^\circ \approx 0.87462\),比較:
\[
0.86615 < 0.87462
\]
❌ 錯誤。
---
**(4) \( \frac{a^2 + b^2 - c^2}{ab} < \sqrt{3} \)**
由餘弦定理:
\[
\cos C = \frac{a^2 + b^2 - c^2}{2ab}
\]
所以
\[
\frac{a^2 + b^2 - c^2}{ab} = 2\cos C = 2\cos 29^\circ \approx 2 \times 0.87462 \approx 1.74924
\]
\(\sqrt{3} \approx 1.732\),比較:
\[
1.74924 > 1.732
\]
❌ 錯誤。
---
**(5) 外接圓半徑小於 \(c\)**
外接圓半徑 \(R = \frac{a}{2\sin A} \approx \frac{a}{2 \times 0.99985} \approx 0.500075 \times a\)
由正弦定理:
\[
c = 2R \sin C \implies R = \frac{c}{2\sin C} = \frac{c}{2 \times 0.4848} \approx \frac{c}{0.9696} \approx 1.0314 \times c
\]
等等,這裡要小心:題目給的 \(a,b,c\) 是邊長,\(R\) 是固定值。
用 \(a = 2R\sin A\),\(c = 2R\sin C\)。
比較 \(R\) 與 \(c\):
\[
c = 2R\sin C \implies \frac{R}{c} = \frac{1}{2\sin C} \approx \frac{1}{0.9696} \approx 1.0314
\]
所以 \(R \approx 1.0314 \times c > c\),因此 \(R < c\) 不成立。
❌ 錯誤。
---
**正確選項:** (1)、(2)
\[
\boxed{12}
\] 報錯
ChatGPT DeepSeek
105指考數學甲試題-03
假設三角形 \(ABC\) 的三邊長分別為\(\overline{AB}=5\)、\(BC = 8\)、\(AC = 6\)。請選出和向量\(\overrightarrow{AB}\)的內積為最大的選項。
(1)\(\overset{\rightharpoonup}{AC}\)
(2)\(\overset{\rightharpoonup}{CA}\)
(3)\(\overset{\rightharpoonup}{BC}\)
(4)\(\overset{\rightharpoonup}{CB}\)
(5)\(\overset{\rightharpoonup}{AB}\)
根據向量內積公式\(\overrightarrow{a}\cdot\overrightarrow{b}=\vert\overrightarrow{a}\vert\vert\overrightarrow{b}\vert\cos\theta\)(\(\theta\)為\(\overrightarrow{a}\)與\(\overrightarrow{b}\)的夾角)。
由餘弦定理\(\cos A=\frac{AB^{2}+AC^{2}-BC^{2}}{2AB\cdot AC}=\frac{25 + 36 - 64}{2\times5\times6}=-\frac{1}{20}\);
\(\cos B=\frac{AB^{2}+BC^{2}-AC^{2}}{2AB\cdot BC}=\frac{25 + 64 - 36}{2\times5\times8}=\frac{53}{80}\);
\(\cos C=\frac{AC^{2}+BC^{2}-AB^{2}}{2AC\cdot BC}=\frac{36 + 64 - 25}{2\times6\times8}=\frac{75}{96}=\frac{25}{32}\)。
\(\overrightarrow{AB}\cdot\overrightarrow{AC}=\vert\overrightarrow{AB}\vert\vert\overrightarrow{AC}\vert\cos A=5\times6\times(-\frac{1}{20})=-\frac{3}{2}\);
\(\overrightarrow{AB}\cdot\overrightarrow{CA}=-\overrightarrow{AB}\cdot\overrightarrow{AC}=\frac{3}{2}\);
\(\overrightarrow{AB}\cdot\overrightarrow{BC}=\vert\overrightarrow{AB}\vert\vert\overrightarrow{BC}\vert\cos(\pi - B)=-5\times8\times\frac{53}{80}=-\frac{53}{2}\);
\(\overrightarrow{AB}\cdot\overrightarrow{CB}=-\overrightarrow{AB}\cdot\overrightarrow{BC}=\frac{53}{2}\);
\(\overrightarrow{AB}\cdot\overrightarrow{AB}=\vert\overrightarrow{AB}\vert^{2}=25\)。
比較可得\(\overrightarrow{AB}\cdot\overrightarrow{CB}\)最大。
答案為(4)。 報錯
ChatGPT DeepSeek
110指考數學甲試題–A
從6、8、10、12中任取三個相異數字,作為三角形的三邊長,且設此三角形的最大內角為\(\theta\)。在所有可能構成的三角形中,\(\cos\theta\)的最小值為 (化成最簡分數)
[選填]從6、8、10、12中任取三個相異數字構成三角形,根據大邊對大角,要使\(\cos\theta\)最小,則最大邊所對的角最大。
由餘弦定理\(\cos\theta=\frac{a^{2}+b^{2}-c^{2}}{2ab}\)(\(c\)為最大邊)。
分別討論:
若取6、8、10,\(\cos\theta=\frac{6^{2}+8^{2}-10^{2}}{2\times6\times8}=0\);
若取6、8、12,\(\cos\theta=\frac{6^{2}+8^{2}-12^{2}}{2\times6\times8}=-\frac{11}{24}\);
若取6、10、12,\(\cos\theta=\frac{6^{2}+10^{2}-12^{2}}{2\times6\times10}=-\frac{5}{15}=-\frac{1}{3}\);
若取8、10、12,\(\cos\theta=\frac{8^{2}+10^{2}-12^{2}}{2\times8\times10}=\frac{64 + 100 - 144}{160}=\frac{1}{8}\)。
所以\(\cos\theta\)的最小值為\(-\frac{11}{24}\) 。 報錯
ChatGPT DeepSeek
04 – 114學測數學b試題16
教室的某牆角是由牆面和地面兩兩互相垂直所構成。設牆角為點\(O\),現有一個三角形擋板\(ABC\),其中頂點\(A\)、\(B\)、\(C\)位在牆面間或牆面與地面間的交界線上,並與牆角\(O\)的距離分別為\(20\)、\(20\)、\(10\)公分;\(AB\)、\(BC\)、\(CA\)三邊與牆面或地面貼合,如圖所示。則\(\angle BAC = \underline{}\)(化為最簡根式)
設
- \( A(20,0,0) \)、\( B(0,20,0) \)(在地面兩牆交線)
- \( C(0,0,10) \)(在牆上)
則
- \( \vec{AB} = (-20,20,0) \)
- \( \vec{AC} = (-20,0,10) \)
利用
\[
\tan\angle CAB = \frac{|\vec{AB} \times \vec{AC}|}{\vec{AB} \cdot \vec{AC}}
\]
計算得:
- 叉積長度 \( = 200\sqrt{6} \)
- 點積 \( = 400 \)
故
\[
\tan\angle CAB = \frac{200\sqrt{6}}{400} = \frac{\sqrt{6}}{2}
\]
**答:** \( \dfrac{\sqrt{6}}{2} \) 報錯
ChatGPT DeepSeek
https://www.ceec.edu.tw/files/file_pool/1/0p051541901400830673/04-114%e5%ad%b8%e6%b8%ac%e6%95%b8%e5%ad%b8b%e7%ad%94%e6%a1%88.pdf
111學測數學B試題-14
坐標平面上有一個半徑為\(7\)的圓,其圓心為\(O\)點。已知圓上有\(A\), \(B\)兩點,且\(AB = 8\) ,則內積\(\overrightarrow{OA}\cdot\overrightarrow{OB}=\underline{○14 – 1}\ \underline{○14 – 2}\) 。
[選填]在\(\triangle AOB\)中,\(\vert\overrightarrow{OA}\vert=\vert\overrightarrow{OB}\vert = 7\),\(\vert\overrightarrow{AB}\vert = 8\)。根據余弦定理\(\cos\angle AOB=\frac{\vert\overrightarrow{OA}\vert^{2}+\vert\overrightarrow{OB}\vert^{2}-\vert\overrightarrow{AB}\vert^{2}}{2\vert\overrightarrow{OA}\vert\vert\overrightarrow{OB}\vert}=\frac{7^{2}+7^{2}-8^{2}}{2\times7\times7}=\frac{49 + 49 - 64}{98}=\frac{34}{98}=\frac{17}{49}\)。則\(\overrightarrow{OA}\cdot\overrightarrow{OB}=\vert\overrightarrow{OA}\vert\vert\overrightarrow{OB}\vert\cos\angle AOB = 7\times7\times\frac{17}{49}=17\)。即\(\underline{○14 - 1}=17\),\(\underline{○14 - 2}=0\)。 報錯
ChatGPT DeepSeek
https://www.ceec.edu.tw/files/file_pool/1/0m053363176747148935/04-111%e5%ad%b8%e6%b8%ac%e6%95%b8%e5%ad%b8b%e9%81%b8%e6%93%87%28%e5%a1%ab%29%e9%a1%8c%e7%ad%94%e6%a1%88.pdf