在坐標平面上,△ABC 內有一點 P 滿足 \(\overrightarrow{AP} = \left( \frac{4}{3}, \frac{5}{6} \right)\) 及 \(\overrightarrow{AP} = \frac{1}{2} \overrightarrow{AB} + \frac{1}{5} \overrightarrow{AC}\)。若 A, P 連線交 BC 於 M,則 \(\overrightarrow{AM} = \left( \underline{\qquad}, \underline{\qquad} \right)\)。(化成最簡分數)
設\(\overrightarrow{AM} = t \overrightarrow{AP} = t\left( \frac{1}{2} \overrightarrow{AB} + \frac{1}{5} \overrightarrow{AC} \right) = \frac{t}{2} \overrightarrow{AB} + \frac{t}{5} \overrightarrow{AC}\)。
因M在BC上,故係數和為1:\(\frac{t}{2} + \frac{t}{5} = 1 \Rightarrow \frac{7t}{10} = 1 \Rightarrow t = \frac{10}{7}\)。
故\(\overrightarrow{AM} = \frac{10}{7} \overrightarrow{AP} = \frac{10}{7} \left( \frac{4}{3}, \frac{5}{6} \right) = \left( \frac{40}{21}, \frac{25}{21} \right)\)。答案:\(\left( \frac{40}{21}, \frac{25}{21} \right)\) 報錯
ChatGPT DeepSeek